
EngageOne Enrichment

Developer Guide

Version 7.4.1

1 - Introducing Enrichment

What is Enrichment...4
What Can I Do with Enrichment............................4
How Does Enrichment Work.................................6
Enrichment Architecture..6
Print Streams...8

2 - Enrichment Language
Basics

Enrichment Language Overview.........................16
Tags and Tag Groups..17
Variables..18
Functions...22
Operators..25
Instructions..27
Logical Expressions..34
Print Stream Commands.....................................35
Comments...36
Specifying Character Strings...............................36
Specifying Files...37
Specifying Measurements...................................40

3 - Developing an Application

Application Development Process.......................43
Processing Flow..49
Input and Output..56
Developing a Control File....................................75
Developing a Rule File..80
Working with User-Written Functions..................88
Utilities...105

4 - Commonly-Used Features

Enhancing Content..135
Sorting, Outsorting, and Output.........................158
Postal Processing..179
Managing Print Stream Resources...................194
Creating a Vault Journal File.............................196

5 - Running an Application

Running on Mainframe Systems.......................201
Running on UNIX..205
Running on Windows..207
Run-Time Arguments..208
Return Codes..213
Using Field Values to Halt Processing..............213
Performance Tuning..213
Required Print Resources.................................216

6 - Troubleshooting an
Application

Troubleshooting an Application.........................219
Testing Performance...221

Table of Contents

1 - Introducing
Enrichment

In this section

What is Enrichment..4
What Can I Do with Enrichment...4
How Does Enrichment Work..6
Enrichment Architecture...6
Print Streams..8

What is Enrichment

Enrichment processes and manipulates print streams and data to support advanced printing and
distribution strategies. Enrichment modifies the output from existing applications independently;
therefore, it requires no changes to your business applications.

Enrichment can handle a variety of output types from your business applications: flat files, AFP
line-data files, AFP Mixed Mode files, fully composed AFPDS files, Xerox DJDE, Metacode files,
PCL files, PDF, PostScript and so on. Because only the output from your business applications is
processed, you do not need to change the business applications themselves.

What Can I Do with Enrichment

Enrichment allows you to performmany print stream enhancement functions, including the following:

• Content enhancement

• Add personalized messages
• Move text and change fonts
• Add new text in white space
• Move and modify barcodes
• Add images and graphics

• Postal automation

4EngageOne Enrichment 7.4.1 Developer Guide

Introducing Enrichment

Add POSTNET™ barcodes•
• Add 4-State and Intelligent Mail® barcodes
• Add ChinaPost barcodes
• Add ZIP + 4®
• Standardize addresses, when used in conjunction with an address validation product such as
Finalist

• Postal presorting, when used in conjunction with a postal presort product such as Mailstream
Plus

• Move update processing
• Combine mail streams produced from multiple applications into a single mail stream

• Inserter control

• Remove or modify old barcodes
• Add advanced barcodes
• Add sequence numbers
• Build file-based insertion controls

• Sort print streams
• Consolidate/merge print streams

For sample applications that show how to accomplish some of these tasks, see the Enrichment
Sample Applications Guide.

The following illustration demonstrates several kinds of enhancements you can make to a print stream
using Enrichment.

5EngageOne Enrichment 7.4.1 Developer Guide

Introducing Enrichment

How Does Enrichment Work

Enrichment typically just plugs into your existing process. This usually means adding an extra step
to the JCL, UNIX shell script, or Windows batch file you use for print processing. You can also run
Enrichment as a totally independent application.

Without Enrichment, your business application creates a print file that prints and runs through an
inserter. If changes to the content or appearance of the print file are required, you must go back to
the business application and start over. This can be costly and time-consuming.

With Enrichment, your business application creates a print file that you run through Enrichment for
the appropriate enhancements. The enhanced output prints and runs through the inserter.

Note: Enrichment does not transform print streams from one format to another (for instance,
from AFP to Metacode).

Enrichment Architecture

The following diagram illustrates the Enrichment architecture.

6EngageOne Enrichment 7.4.1 Developer Guide

Introducing Enrichment

C Library or DLLs

The C library (for mainframe systems or UNIX) or DLLs (for Windows) serve as the code library
accessed by the Enrichment engine when running applications. Depending on the platform, various
libraries may be required.

External Programs

External programs include presorting, sorting and mail cleansing software called by Enrichment.
These programs are not considered part of Enrichment.

Enrichment Engine

The Enrichment engine is the component that processes print streams according to instructions
coded in the Enrichment language (control file and rules). The engine runs on a variety of platforms.
Code created to run on the engine under one platform will run on all others unless it accesses
platform-dependent data, external programs or user-written functions. This book describes coding
methods for the Enrichment engine.

Enrichment User-Written Functions

Users can extend Enrichment functionality by writing their own functions in a variety of languages.
The object code for the user-written functions must be executable code that has been compiled and
linked. On Windows, it may be a DLL.

Enrichment JES Interface

The JES Interface provides the ability for JES spool volume data to be used as input to an Enrichment
application. There are two JES interfaces: a non-SAPI interface and a SAPI interface. The non-SAPI
interface directly accesses the JES spool volumes. The SAPI interface uses the IBM SYSOUT
Application Programming Interface (SAPI) to retrieve spool data, and does not directly access spool
volumes.

7EngageOne Enrichment 7.4.1 Developer Guide

Introducing Enrichment

Enrichment Visual Engineer Development Environment

The Enrichment Visual Engineer development environment is a tool used by developers to build and
test Enrichment applications. It runs onWindows and can improve development productivity compared
to manually coding and testing applications in a standard editor.

Enrichment Applications

Programmers or printer specialists write Enrichment applications to perform specific functions on
specific print files. Each application is coded using the Enrichment language, which includes two
basic components:

• Control File: defines the objects to be processed by Enrichment using object-oriented constructs.
• Rule File: defines conditional processing logic for the application in traditional programming code.
While a rule file is optional, it is used for most applications. The rule file is composed of sections
executed at different points in the application. In many cases the rule file is embedded in the control
file so it is not an actual file. However, the rule file can be a separate file that is called from a control
file.

Some users build programs that automatically write Enrichment code and generate Enrichment
applications.

Print Streams

Enrichment supports the following print stream formats:

• AFP
• DJDE
• Fixed length record line data
• Line Data
• Metacode
• PCL
• PDF
• PostScript

AFP Print Streams

AFP is a printer control language for AFP-compatible printers. There are several different forms of
AFP:

8EngageOne Enrichment 7.4.1 Developer Guide

Introducing Enrichment

• AFP mixed mode: a mix of line printer data and AFP records
• AFP line data: a data file with an associated map (PAGEDEF) that tells the printer where to put
each data field on the page AFPDS A series of print commands in compact form

An AFP record contains one or more AFP commands. There are many different types of AFP
commands. Each command has a specified layout and associated data. You can use Enrichment
to modify the contents of these commands or add new AFP records. Modification of commands is
normally done with a field replacement process. New records are automatically added when you use
the Add group tags. However, you can format records and add them yourself using a variety of
methods.

Note: You can use Enrichment Visual Engineer’s Explain function to view and get more
information on the AFP commands in a print stream.

Given that AFP is an IBM printer control language and is normally associated with mainframe systems,
AFP files are normally in EBCDIC format.

Refer to your IBM documentation for more information on AFP commands.

DJDE Print Streams

Xerox DJDE data is a special record which is placed within existing line data printer files to add
special Xerox print features. These records contain Dynamic Job Descriptor Entries (DJDEs). DJDEs
simply instruct the printer to perform a function. These commands are not printed.

Records containing DJDEs are identified to the printer by specifying a special character sequence
in a specific range of columns. In the following example, the characters #+#+DJDE are used in
columns 3 through 10 to indicate a DJDE record.

#+#+DJDE ASSIGN=(1,3);
#+#+DJDE ASSIGN=(2,11);
#+#+DJDE ASSIGN=(6,23);
#+#+DJDE ASSIGN=(7,73);
#+#+DJDE ASSIGN=(8,80);
#+#+DJDE BEGIN=(9.0,0.4);
#+#+DJDE BEGIN=(.3,0);
#+#+DJDE FORMAT=P0635;
#+#+DJDE MARGIN=(.05,IN);
#+#+DJDE DUPLEX=NO,FORMS=(A064),END;

13 HEALTH INSURANCE, INC.
3 444 CORPORATE DR
3 BATAVIA, IL 60510
03 Telephone No. 123-223-5800

As shown above, DJDEs are used to specify the format of the page, margins, and duplex information.
Some of the key DJDE commands are described below.

9EngageOne Enrichment 7.4.1 Developer Guide

Introducing Enrichment

Refer to the Xerox Production Print Mode PDL/DJDE Reference for your printer for more information
on DJDE commands.

Line Data

Line data print streams are print streams that are prepared for printing on line printers. Line data can
contain carriage control characters and table reference characters (TRC) for spacing and font
selections.

Fixed-Length

A fixed-length print stream is a line data print stream with no end-of-record indicator. Records are
defined as a specific number of bytes rather than some other inherent record structure such as in
AFPDS, or using an end of line indicator such as Line Data.

Metacode Print Streams

The Xerox printer control language Metacode allows users to place commands in their print stream
that give printing instructions. Metacode commands control many things, including positioning of
data on a page, orientation of data on the page, and font selection. Metacode print files can be very
large, so Metacode commands and command options are represented in hexadecimal codes. Refer
to your Xerox documentation for more information on Metacode printing.

Note: Metacode print streams can also contain Xerox DJDE commands. You should process
Xerox print streams without Metacode commands as DJDE line data.

PCL

Printer Command Language (PCL) is a Hewlett-Packard language.

PDF

PDF is a page description language supported by Adobe Systems. For complete information, see
https://acrobat.adobe.com/us/en/acrobat/about-adobe-pdf.html.

10EngageOne Enrichment 7.4.1 Developer Guide

Introducing Enrichment

https://acrobat.adobe.com/us/en/acrobat/about-adobe-pdf.html

.

PostScript

PostScript is a page description language supported by Adobe Systems. For complete information,
see http://www.adobe.com/products/postscript/main.html.

Carriage Controls

A carriage control character is an instruction to the printer that determines how many lines to skip
before printing the next line. Initially, all printers used a common set of carriage control commands
to dictate how they would operate. This common set was established by ANSI, and is called ANSI
carriage controls.

IBM created a second set of controls to provide expanded print capabilities called “machine codes”
or “machine carriage controls”. Machine carriage controls are hexadecimal codes which, like ANSI
carriage controls, occur in column 1 of the print stream.

Over time, more sophisticated printers added the ability to pre-program specific line positions to be
associated with specific carriage control values. The printer could move to these line positions when
a specific carriage control command occurred. The programmer could predefine positions on
pre-printed forms and tell the printer to move to them without trying to count how many lines the
printer had printed and thus how many it had to move. These controls are called channel controls
and generally have the values 1 through 9 and A through C. IBM uses a file called a Forms Control
Buffer (FCB) to associate positions with each of the channel control values.

The following table lists valid ANSI carriage control characters.

Table 1: ANSI Carriage Control Characters

ActionANSI

Print without spacing (overstrike).+

Space one line and print (single spacing).Blank

Space two lines and print (double spacing).0

Space three lines and print (triple spacing).-

Skip to the first line on a new page and print.1

11EngageOne Enrichment 7.4.1 Developer Guide

Introducing Enrichment

http://www.hp.com/bizsupport

ActionANSI

Skip to the line position defined as Channel 2 and print.2

Skip to the line position defined as Channel 3 and print.3

Skip to the line position defined as Channel 4 and print.4

Skip to the line position defined as Channel 5 and print.5

Skip to the line position defined as Channel 6 and print.6

Skip to the line position defined as Channel 7 and print.7

Skip to the line position defined as Channel 8 and print.8

Skip to the line position defined as Channel 9 and print.9

Skip to the line position defined as Channel 10 and print.A

Skip to the line position defined as Channel 11 and print.B

Skip to the line position defined as Channel 12 and print.C

The following table lists valid machine carriage control characters.

Table 2: Machine Carriage Control Characters

ActionMachine

Print without spacing (overstrike).01

Print and space one line (single spacing).09

Print and space two lines (double spacing).11

Print and space three lines (triple spacing).19

Print, then skip to the first line on a new page.89

Print, then skip to the line position defined as Channel 2.91

12EngageOne Enrichment 7.4.1 Developer Guide

Introducing Enrichment

ActionMachine

Print, then skip to the line position defined as Channel 3.99

Print, then skip to the line position defined as Channel 4.A1

Print, then skip to the line position defined as Channel 5.A9

Print, then skip to the line position defined as Channel 6.B1

Print, then skip to the line position defined as Channel 7.B9

Print, then skip to the line position defined as Channel 8.C1

Print, then skip to the line position defined as Channel 9.C9

Print, then skip to the line position defined as Channel 10.D1

Print, then skip to the line position defined as Channel 11.D9

Print, then skip to the line position defined as Channel 12.E1

Space one line without printing.0B

Space two lines without printing.13

Space three lines without printing.1B

Skip to the first line on a new page without printing.8B

Skip to the line position defined as Channel 2 without printing.93

Skip to the line position defined as Channel 3 without printing.9B

Skip to the line position defined as Channel 4 without printing.A3

Skip to the line position defined as Channel 5 without printing.AB

Skip to the line position defined as Channel 6 without printing.B3

Skip to the line position defined as Channel 7 without printing.BB

13EngageOne Enrichment 7.4.1 Developer Guide

Introducing Enrichment

ActionMachine

Skip to the line position defined as Channel 8 without printing.C3

Skip to the line position defined as Channel 9 without printing.CB

Skip to the line position defined as Channel 10 without printing.D3

Skip to the line position defined as Channel 11 without printing.DB

Skip to the line position defined as Channel 12 without printing.E3

No operation.03

So, if the print stream were impact data with plus signs in column 1 of the data, we would specify
our Input group <TYPE> tag as follows:

<TYPE> IMPACT ANSI

Table Reference Characters (TRCs)

Some line data printers can handle multiple fonts within an input. On such printers, you can define
a specific font for each line of print by specifying a font number for the line. This font information
often goes in column two of the print stream (with column one containing carriage control information).
The font information in column two is called the Table Reference Character (TRC) or the font index.
The actual font associated with the TRC is specified in JCL or by other means.

By changing the TRC, you can change the font used to print the line. Likewise, when you add
information, you may need to know which font to use.

14EngageOne Enrichment 7.4.1 Developer Guide

Introducing Enrichment

2 - Enrichment Language
Basics

In this section

Enrichment Language Overview..16
Tags and Tag Groups...17
Variables...18
Functions..22
Operators..25
Instructions...27
Logical Expressions..34
Print Stream Commands..35
Comments..36
Specifying Character Strings..36
Specifying Files..37
Specifying Measurements..40

Enrichment Language Overview

Enrichment applications are written in a high-level object-based coding language.

Defining an Object

To define an object in Enrichment you use a tag group. The example below shows code from a
control file. In the example, an input print stream object is defined using an Input tag group (<INPUT>
and </INPUT>), and a data item object from the print stream is defined using a Field tag group
(<FIELD> and </FIELD>) that is nested in the Input tag group. When you code a tag group, you
are telling Enrichment to create and process the associated object.

Defining an Object's Attributes

If you were describing an object in nature—a tree, for example—you would need to mention certain
attributes of that object (such as its type, size, age, color, and so forth). In Enrichment, you also need
to describe each of the attributes of the object. To do this, you use tags within the object's tag group.
These tags define specific attributes (such as the <TYPE> tag, which describes the type of input).
Therefore, tags (and not tag groups) define data about the object.

16EngageOne Enrichment 7.4.1 Developer Guide

Enrichment Language Basics

Objects may also contain or be made up of other objects (such as the organization of a tree into
branches). In Enrichment, you include tag groups within other tag groups to indicate hierarchical
relationships. Because the Field group is within the Input group, this indicates that the field object
described by a specific Field group is located only in the print stream associated with the Input group,
as shown above.

Enrichment Language vs. Procedural Languages

The Enrichment language is unlike traditional procedural languages like COBOL or RPG. While the
coding of an Enrichment object is similar to a declaration in a procedural language, in Enrichment
the object is automatically processed when it is defined. Conversely, in a procedural language you
would have to call functions or write code to read the input and find the data items on each page,
because the declaration itself does not cause an action to occur. By design, Enrichment reads the
print stream, finds pages, finds documents, and collects data from the document as a direct response
to the definition of the <INPUT> object in the control file. This can save a lot of programming time
and can result in much more reusable and maintainable code.

Note that the code you create in a rule file is procedural. However, these procedures are in effect
acting upon the objects and processes established in the control file. For example, the DOCUMENT:
section of the rule file operates on each of the documents read from the print stream. By simply
redefining the value of a variable in the rule file, you can change the appearance of the document.
You do not have to actually write code to place the variable on the document.

Tags and Tag Groups

The main component of the Enrichment language is the tag. Tags are used to identify input and
output; to modify, delete and add objects; to specify sort and match criteria; to insert pages or records;
and to set up address standardization and postal presort functions.

Tags and tag groups are keywords delimited by "<" and ">". For example, this is the file tag:

<FILE>

A tag is followed by one or more parameters. Multiple parameters are separated by spaces. Some
parameters are required and others are optional, depending on the tag used.

Tag groups are sets of tags that go together to perform a particular function. There are two kinds of
tag groups: major tag groups and minor tag groups. Major tag groups can be placed anywhere within
the control file. Minor tag groups must be placed within (that is, nested) in another tag group.

17EngageOne Enrichment 7.4.1 Developer Guide

Enrichment Language Basics

Tag groups are defined by an opening and closing tag. The closing tag contains a "/" before the
keyword. In the example below, the Banner tag group is used. The tags <NAME>, <FILE>, <TYPE>,
and <SUBSTITUTE> are nested in the Banner tag group.

<banner> /* opening tag of Banner tag group */
<name> BANBEG /* Name tag followed by parameter */
<file> c:\banners\mybanner.lin /* File tag followed by parameter */
<type> I /* Type tag followed by parameter */
<substitute> Y /* Substitute tag followed by parameter */
</banner> /* closing tag of Banner tag group */

Note: Tags and tag groups are not case sensitive.

You can place tag groups in the control file in any order, but each tag group must begin and end
with the proper tags (for example, <INPUT> and </INPUT> begin and end an Input tag group).

Variables

Variable names begin with %% and may contain up to 50 characters but no blanks. They are also
case sensitive. The following are examples of different variable names.

%%InvoiceAmount
%%INVOICEAMOUNT
%%Invoice_Amount

All variables are available to all sections of the code. As the diagram below illustrates, if a <FIELD>
tag in the control file sets a variable, its value is available to all subsequent steps in the application.

Variables are persistent. Once a variable's value is set, it retains that value until it is reset or the
program ends.

18EngageOne Enrichment 7.4.1 Developer Guide

Enrichment Language Basics

For example, assuming %%LAST_BRANCH is not being assigned a value from the document by a
<FIELD> tag but%%BRANCH is, the rule code shown in the following example would place a banner
page between documents where the branch changes. Field variables are reset for each document.

START:
%%LAST_BRANCH = ''

DOCUMENT:
IF %%LAST_BRANCH <> %%BRANCH THEN

<BANNER> BannerFile BEFORE
%%LAST_BRANCH = %%BRANCH

ENDIF

Note: In the above example, %%LAST_BRANCH retains its value from the last time the
DOCUMENT: section was run.

You can place variable names within the body of inserts, documents, and banners. If there are
variables within these objects, Enrichment can automatically replace the variable name with its value
during processing.

For example, if you have $%%amount in the input document and %%amount=10.56 then the text in
your output would be $10.56. Likewise if you have %%productname™ in the input document and
%%productname=SuperWidget then the text in your output would be SuperWidget™.

Note: Variable substitution is controlled by the <SUBSTITUTE> tag.

Note also that:

• Variables can contain numeric, string, array, or file name values. There is no typing of variables in
Enrichment. Enrichment automatically detects a variable's expected type (integer, string, and so
on) based on the context in which you use it.

• You do not need to declare a variable unless the variable is an array or a global variable. To declare
an array or global variable, use the DECLARE function. For more information on arrays, see Arrays
on page 21.

• To set a variable to nothing, enter two quotation marks with nothing between them. For example,
%%LAST_BRANCH = ''.

• Delimit variable values that contain spaces with single quotes or double quotes—for example,
'908 West 7th St.' or "908 West 7th St." If the value contains quotation marks or
apostrophes, you must double the internal quotation marks ('Guy''s Auto Hut' or "Bill''s
""Hi-Fi"" Stereos") or Enrichment assumes they terminate the value.

Initializing Variables in the Rules

If a variable is not set by a field and you’re going to compare its value to that of another variable to
set a condition, you may want to set that variable to a starting or initial value. This is called
“initialization”.

19EngageOne Enrichment 7.4.1 Developer Guide

Enrichment Language Basics

For example, assume we’re using a counter (%%OnePageDocs) to keep track of the number of
one-page documents in an output. We want the counter set initially to 0 so we can increment it every
time Enrichment encounters a one-page document. As the following figure shows, we set
%%OnePageDocs to 0 in the START: section of the rules and increment it in the DOCUMENT: section.
We set%%OnePageDocs to a new variable (%%Total1Pagers) in the FINISH: section of the rules,
perhaps to add this information to a report.

START:
%%OnePageDocs = 0

DOCUMENT:
IF %%TOTAL_PAGES = 1 THEN

%%OnePageDocs = %%OnePageDocs + 1
ENDIF

FINISH:
%%Total1Pagers = %%OnePageDocs

System variables

Enrichment automatically creates variables called system variables. System variables are produced
by key Enrichment steps. If a particular step, such as Presort, is not performed, then system variables
normally produced by that step will have no value.

You can use system variables just as you would variables you create. System variables can be
applied in your control or rule file. Control files and rule files share variables, so when you set a
variable to a value in the control file, that variable and its value are available in the rule file.

Note: The value of system variables can change frequently. If a value is assigned to a system
variable and later in the code you are expecting that value to still be in the system variable, it
may not be because subsequent function calls or section changes could have modified the
value.

Common System Variables
System variables are variables whose names have been reserved for use by Enrichment. Most often,
their values are the result of internal calculations made during processing.

Enrichment automatically sets system variable values during processing, and their values can be
set or changed in the rule file. Therefore, the type of information their values can contain is more
restricted than for user-defined variables.

There are more than 80 system variables available for your Enrichment applications, but as the
following table shows, the list of those most commonly used is quite small.

20EngageOne Enrichment 7.4.1 Developer Guide

Enrichment Language Basics

Table 3: Frequently-Used System Variables

ValueSystem Variable

The overall document number, regardless of which output contains the document.%%DOCUMENT_NO

The logical front page number of the current page in the document.%%PAGE_NO

The return code from rule function call processing.%%RC

The sequence number for each document in the output file.%%SEQUENCE_NO

The total number of logical front pages in the document.%%TOTAL_PAGES

Arrays

To declare an array, use the DECLARE function. For complete information on the DECLARE function,
see theEnrichment Language Reference Guide.

The elements of an array are referenced as varname[index]. For example, the elements of an array
named %%AR are referenced as %%AR[0], %%AR[1], etc.

Array indexing is zero based. For example, if you declare an array with an array size of 5, valid
indexes would be 0, 1, 2, 3, 4. Five would be out of bounds.

The following sample illustrates a basic array.

<input>
<name> input
<file> input.txt
<type> I

</input>
<rule>
<content>
%%result = declare(%%arr, 'A' , 5)
%%arr[0] = "apple"
%%arr[1] = "banana"
%%arr[2] = "orange"
%%arr[3] = "pineapple"
%%arr[4] = "watermelon"
FOR %%i = 0 to arraysize(%%arr) -1

write("result.txt", %%arr[%%i])
NEXT %%i

</content>
</rule>

21EngageOne Enrichment 7.4.1 Developer Guide

Enrichment Language Basics

<output>
<name> output
<file> output.txt

</output>

Functions

Enrichment includes an extensive set of functions that allow you to manipulate data from your inputs
and return the result as a variable value. Enrichment also allows calls to user-written functions.

There are four types of functions: logical, string, numeric, and command.

• Logical functions return TRUE (1) or FALSE (0).
• String functions return a string of characters.
• Numeric functions return a numeric value.
• Command functions are used to reference Enrichment functions that do not return a value. The
following example shows the WRITE function which returns no value:

WRITE(DD:EXCEPTIO, %%RECORD, F, 132)

For compatibility with previous releases of EnrichmentEnrichment, function statements can also
be referenced in a set statement. For example:

%%X = WRITE(DD:EXCEPTIO, %%RECORD, F, 132)

The variable on the left side is set to a null string.

The most commonly used functions include:

• CHANGED indicates whether a variable value has changed from the previous document to the
current one.

• FOUND indicates whether a particular field was found in the document during Enrichment processing.
• JUSTIFY returns a string aligned within a specified number of characters.
• LOOKUP returns the record that satisfied the lookup criteria.
• SUBSTR returns a portion of a string.

Arguments

The data and options passed to a function are called arguments. Generally, arguments are numeric
values, strings, or logical expressions. There are only two functions for which this is not the case:
CHANGED and FOUND. These functions’ arguments must be a variable because these functions supply
information about the status of a variable.

22EngageOne Enrichment 7.4.1 Developer Guide

Enrichment Language Basics

The syntax for each Enrichment function is:

FUNCTION(arg1,[arg2,arg3,arg4,arg5,arg6,arg7])

In this example, FUNCTION has seven arguments. Arguments within brackets are optional. Enrichment
uses the default value for optional arguments left unspecified.

Note: Do not include brackets when specifying functions in a rule file.

Some arguments have default values that Enrichment uses if you do not explicitly specify the
argument. For example, if a function call is made as follows:

%%answer = FUNCTION(arg1,,arg3)

Enrichment sets the value for arg2 to its default. Note that no value was entered for arg2. Likewise,
arg2 and arg3 could be set to their default values as follows:

%%answer = FUNCTION(arg1)

No separators (that is, commas) are required since only the first argument is specified. If a function
is called using all default argument values or if there are no arguments, the parentheses are still
required. For example:

%%answer = FUNCTION()

Return values

Functions return their answer to a variable. You must assign the return value to a variable in order
to access the return value. In the example below, REVERSE is the name of the function (which
reverses the content of the argument). The argument is a variable called %%Barcode. The answer
is stored in the original variable, changing the value of that variable.

%%Barcode = REVERSE(%%Barcode)

Or, you could store the answer as the value of a different variable as follows:

%%Newbar = REVERSE(%%Barcode)

A function returns its result and also sets three system variables:

• return code (%%RC)
• return value (%%RV)
• return message (%%RM)

Note: If you want to use the%%RC,%%RM, or%%RV system variable anywhere other than
directly after the function call, you must set their values to another variable. This is because
the value of system variables can change frequently. If a value is assigned to %%RC and
later in the code you are expecting that value to still be in %%RC, it may not be because
subsequent function calls or section changes could have modified the value.

23EngageOne Enrichment 7.4.1 Developer Guide

Enrichment Language Basics

Return codes
Return codes, which Enrichment stores in the system variable%%RC, are integer values that indicate
the success or failure of the function call. While each function may set a specific return code based
on its result, all such functions follow these conventions:

• A return code of 0 indicates that the function was successful.
• A negative return code (for example, -1) indicates that invalid arguments were used or a severe
error occurred.

• A positive return code (for example, 1) indicates that the function was not successful or was partially
successful.

Note: To handle errors that may result from calls to Enrichment functions, you should always
include logic to check the return code value. Enrichment does not provide any error messages
if a function call fails.

The%%RC contains the return code from the most recent function call. As shown in the figure below,
you can use %%RC to specify alternate processing.

%%AMOUNT = FINDNUM(%%LINE1) /*Find amt in line 1 or 2 */
IF %%RC <> 0 THEN /* If amount is not found */
%%AMOUNT = FINDNUM(%%LINE2)
IF %%RC <> 0 THEN /*Set to 12 if still not found */

%%AMOUNT = 12
ENDIF

ENDIF

Return values
Return values, which are integer values that Enrichment stores in the system variable%%RV, provide
data that supplements the answer returned from the function call. The data stored in the return value
(if any) depends on the function. For example, the return value from the FINDZIP function identifies
what type of ZIP Code™ was found (ZIP, ZIP + 4®, or ZIP+4+2). Enrichment stores the actual ZIP
Code™ in the value returned by the function. As the example below shows, you can use the%%RV
system variable in the rule file in the same way you use the %%RC system variable.

%%ZIP = FINDZIP(%%ADDRESS) /*FIND ZIP CODE, */
IF %%RV = 5 THEN /*OUTSORT 5 Digit */
<OUTPUT> 5DIGIT

ELSE
<OUTPUT> ZIP4
ENDIF

Some functions do not produce return values because they do not produce supplemental results.
For example, the TIME function does not produce a %%RV value.

24EngageOne Enrichment 7.4.1 Developer Guide

Enrichment Language Basics

Return messages
Return messages, which Enrichment stores in the system variable %%RM, are C messages that
indicate why certain functions failed. For example, if you use the EXISTS function on a file that does
not exist, Enrichment sets the %%RM system variable to the C message “An I/O abend has
been trapped.”

The figure below shows an example of the %%RM system variable in the rule file.

IF NOT EXISTS('/usr/lib/myfonttable') THEN
%%Msg = %%RM
MESSAGE(1, W, "Could not open font table - " | %%Msg)

ENDIF

Operators

The table below lists every Enrichment operator along with its type, a brief description, proper syntax,
and processing precedence. Enrichment evaluates mathematical expressions from left to right
according to the indicated operator precedence. If a mathematical expression contains parentheses,
Enrichment evaluates expressions within the parentheses first.

Note: Enrichment does not support decimal math. You can only perform mathematical
operations on whole numbers.

Table 4: Operators

PrecedenceSyntaxDescriptionTypesOperator

1(...)Open and close
parentheses

Any()

2-%%xUnary minusArithmetic-

3%%x * %%yMultiplicationArithmetic*

3%%x % %%yDivision (integer)Arithmetic%

3%%x # %%yRemainderArithmetic#

4%%x + %%yAdditionArithmetic+

25EngageOne Enrichment 7.4.1 Developer Guide

Enrichment Language Basics

PrecedenceSyntaxDescriptionTypesOperator

4%%x - %%ySubtractionArithmetic-

5%%x | %%y

Note: On mainframe systems you can use either
a solid vertical bar (|, EBCDIC X’4F’) or a
broken vertical bar (¦, EBCDIC X’6A’) as a
concatenation character. On UNIX and Linux
systems, the vertical bar is sometimes displayed
solid, sometimes broken, but is always ASCII
X’7C’.

ConcatenateString|

6IF %%x = %%y THENEqualityComparison=

6IF %%x != %%y THENInequalityComparison!= \= <>

6IF %%x < %%y THENLess thanComparison<

6IF %%x <= %%y THENLess than or equal
to

Comparison<=

6IF %%x > %%y THENGreater thanComparison>

6IF %%x >= %%y THENGreater than or
equal to

Comparison>=

6%%x @ "KY TN IN"

For example, the statement

%%state @ KY CA NC CT

is TRUE if %%state is any of the following:

• K
• KY C
• KY CA
• CA

It is FALSE if %%state is:

• CA KY
• KY CT

Checks if the first
string is contained
in the second
string.

Comparison@

26EngageOne Enrichment 7.4.1 Developer Guide

Enrichment Language Basics

PrecedenceSyntaxDescriptionTypesOperator

6%%x @= "K* T*"

For example, the statement

%%state @= "K* C*"

is TRUE if %%state is "KY CA".

It is FALSE if %%state is "KY NY".

It is also FALSE if %%state is "ky ca"

Usewildcards with
this operator to
match a pattern.
Case sensitive.

Comparison@=

6%%x @= "K* T*"

For example, the statement

%%state @= "K* C* n* c*"

is TRUE if %%state is "KY CA NC CT:.

It is FALSE if %%state is "KY NC".

Use wildcards with
this operator to
match a pattern.
Not case
sensitive.

Comparison*=

7IF NOT expression1 THENNotBooleanNOT

8IF expression1 AND expression2 THENAndBooleanAND

8IF expression1 OR exression2 thenOrBooleanOR

Instructions

Instructions let you control the processing flow of the rule file. There are five types of instructions: IF
THEN ELSE, QUIT, FOR…NEXT, DO…LOOP, and SELECT CASE.

IF...THEN...ELSE

When Enrichment encounters an IF THEN ELSE instruction, it evaluates the logical expression in
the IF clause. If it is TRUE, then the instructions that follow are executed. If it is FALSE, then the
first ELSEIF logical expression is similarly evaluated. This continues for all ELSEIF clauses. If no
logical expression is TRUE, then the ELSE clause, if any, is executed.

27EngageOne Enrichment 7.4.1 Developer Guide

Enrichment Language Basics

A simple IF/THEN/ELSE instruction is shown below.

IF logical-expr-1 THEN
statements-1

ELSEIF logical-expr-2 THEN
statements-2

ELSE
statements-3

Note: The ELSEIF clause can be omitted or can be repeated as many times as desired. The
ELSE clause can also be omitted.

QUIT

The QUIT instruction causes Enrichment to immediately halt execution of the current rule file section.
It can be useful for exiting complicated logic when an error occurs. For example:

IF %%x = %%y THEN
DO
%%String = Read(DD:FILE)
IF %%String = 'Last line' THEN
MESSAGE(1, W, “Unexpected last line in :FILE”)
QUIT

ENDIF
LOOP WHILE %%String = 'Car'
ENDIF

SELECT CASE

The SELECT CASE instruction executes one of several groups of statements, depending on the
value of an expression. The syntax for SELECT CASE is:

SELECT CASE test-expr
CASE expr
statements-1
CASE value TO value
statements-2
CASE [IS] compare-operator expr
statements-2
CASE expr-list
statements-2
CASE ELSE
statements-3
END SELECT

28EngageOne Enrichment 7.4.1 Developer Guide

Enrichment Language Basics

where:

• test-expr is the expression to compare with each CASE expression. This can be a numeric or
string expression.

• if expr equals the test-expr, the case is performed.
• value TO value is a range of values to compare with the test-expr. This range can be a
numeric or string expression. If a string expression is used, message PDR0812W will appear. It
may be ignored.

• compare-operator expr is a range of values, such as IS > 10. The IS keyword is optional.
• expr-list is one or more valid case expressions separated by commas. The correct form is:

case-expr [, case-expr [, case-expr]...]

An example of expr-list is:

SELECT CASE %%Value
CASE 1
%%Sale = 'single'
CASE 2
%%Sale = 'double'
CASE 3, 5 TO 7, IS > 20
%%Sale = 'special'
CASE ELSE
%%Sale = 'other'
END SELECT

In this example:

• if the variable %%Value is 1, the variable %%Sale is set to single
• if %%Value is 2, %%Sale is set to double
• if %%Value is 3, 5, 6, 7, or greater than 20, %%Sale is set to special
• if %%Value is anything else, %%Sale is set to other.

From this example, you can see that the SELECT CASE instruction can be used in place of an IF
THEN ELSE instruction with multiple ELSEIF statements.

FOR...NEXT

The FOR…NEXT instruction repeats a group of statements a specified number of times.

Note: Infinite loops are possible with FOR loops. Enrichment does not check for infinite loops,
so you should set time conditions appropriately.

29EngageOne Enrichment 7.4.1 Developer Guide

Enrichment Language Basics

The syntax for FOR…NEXT is:

FOR %%counter = start-expr TO end-expr [STEP step-expr]
Statements
[EXIT]
[EXIT FOR]
[ITERATE]
[ITERATE FOR]
statements
NEXT [%%counter]

where

• %%counter is a variable name that will contain the counter value during each loop execution. The
%%counter variable is set to the start-expr before the first loop iteration and is incremented
by step-expr until it equals or exceeds the value of end-expr.

• start-expr is the initial numeric value to set the %%counter variable prior to the first loop
iteration. It may be a simple number or a complex expression.

• end-expr is the numeric value that %%counter must equal or exceed to terminate the loop
execution. It may be a simple number or a complex expression.

• step-expr is the numeric value to increment %%counter at the end of each loop iteration. It may
be a simple number or a complex expression. In addition, it may be either positive or negative.

Hints

• The STEP keyword and step-expr are optional. The default STEP is 1.
• If start-expr exceeds end-expr at the start of the first loop iteration, the loop will not be
executed.

• EXIT and EXIT FOR both immediately leave a given loop. EXIT by itself leaves the innermost
FOR or DO loop. Since EXIT can also leave a DO loop, EXIT FOR is more explicit. For example:

FOR %%Count = 1 to 10
DO WHILE %%String != 'Car'
%%String = READ(DD:FILE)
IF %%String = 'Last line' THEN
EXIT FOR
ENDIF
LOOP
NEXT %%Count

In this example, the EXIT FOR statement will leave both the DO loop and the FOR loop. An EXIT
alone would have only left the inner DO loop.

• ITERATE or ITERATE FOR will cause the next iteration of the loop. The %%counter variable is
incremented, and the next loop iteration begins at the top. Any statements below ITERATE are
not executed until the iterations are complete.

30EngageOne Enrichment 7.4.1 Developer Guide

Enrichment Language Basics

• The use of the%%counter variable in the NEXT statement is optional. Using a variable can help
you reference which loop is ending, especially when you have nested FOR loops.

• If you omit the FOR on the EXIT FOR statement, the EXIT means to exit the innermost loop. If
you nest a DO inside a FOR, you can have an EXIT FOR statement that will exit the outer FOR
loop.

• You can use an ITERATE FOR substatement to cause the next iteration of the FOR loop to begin
executing immediately. If you specify ITERATE by itself, it goes to the top of the innermost loop.

DO...LOOP

The DO…LOOP instruction repeats a block of statements while a condition is TRUE or until a condition
becomes TRUE.

Note: Infinite loops are possible with DO loops. Enrichment does not check for infinite loops,
so you should set time conditions appropriately.

The syntax for DO…LOOP to test the logical expression at the top of the loop is:

DO WHILE logical-expr
statements

LOOP

Or

DO UNTIL logical-expr
statements

LOOP

The syntax for DO…LOOP to test the logical expression at the bottom of the loop is:

DO
statements

LOOP WHILE logical-expr

Or

DO
statements

LOOP UNTIL logical-expr

where logical-expr is the logical expression that will be tested to determine when to leave the
loop.

31EngageOne Enrichment 7.4.1 Developer Guide

Enrichment Language Basics

To leave or iterate a DO loop:

DO…
statements
[EXIT]
[EXIT DO]
[ITERATE]
[ITERATE DO]
statements
LOOP…

Hints

• WHILE continues the loop as long as the logical-expr is TRUE. If the loop is tested at the top
and the WHILE expression if FALSE on the first iteration, the loop will not be executed at all.

• UNTIL continues the loop until the logical-expr becomes TRUE. If the loop is tested at the top
and the UNTIL expression is TRUE on the first iteration, the loop will not be executed at all.

• The loop will always be executed at least once if the loop is tested at the bottom.
• EXIT and EXIT DO both immediately leave a given loop. EXIT by itself leaves the innermost FOR
or DO loop. Since EXIT can also leave a FOR loop, EXIT DO is more explicit. For example:

DO WHILE %%String != 'Car'
FOR %%Count = 1 to 10
%%String = READ(DD:FILE)
IF %%String = 'Last line' THEN
EXIT DO
ENDIF
NEXT %%Count
LOOP

In this example, the EXIT DO statement will leave both the DO loop and the FOR loop. An EXIT
by itself would have only left the inner FOR loop.

• ITERATE or ITERATE DO will cause the next iteration of the loop. The logical-expr is
evaluated and the next loop iteration begins at the top of the loop. Any statements below the
ITERATE are not executed until the iterations are complete.

• If you omit the DO on the EXIT DO statement, the EXIT means to exit the innermost loop. If you
nest a DO inside a FOR, you can have an EXIT FOR statement that will exit the outer FOR loop.

• You can use an ITERATE DO substatement to cause the next iteration of the DO loop to begin
executing immediately. If you specify ITERATE by itself, it goes to the top of the innermost loop.

32EngageOne Enrichment 7.4.1 Developer Guide

Enrichment Language Basics

Example of Instructions

The following example shows a rule file that contains these instruction groups.

<rule>
<content>
DOCUMENT:
%%i = 1
do while %%i < 3
message(0, I, "DO WHILE, i=" | %%i)
%%Mess1 = "DO WHILE, i=" | %%i
WRITE(DDOUTPUT2,%%Mess1)
%%i = %%i + 1
loop
do
message(1, I, "DO UNTIL after, i=" | %%i)
%%Mess2 = "DO UNTIL after, i=" | %%i
WRITE(DDOUTPUT2,%%Mess2)
%%i = %%i + 1
loop until %%i > 3
%%a = substr(%%Account_Number, 1, 4)
%%j = %%a # 20
for %%i = %%j to %%j + 25 step 2
if %%i = 26 then
message(7, I, "Iterating for, i=" | %%i)
%%Mess3 = "Iterating for, i=" | %%i
WRITE(DDOUTPUT2,%%Mess3)
iterate for
endif
select case %%i
case 14
message(2, I, "Case 1, i=" | %%i)
%%Mess4 = "Case 1, i=" | %%i
WRITE(DDOUTPUT2,%%Mess4)

case 16 to 20, 24, is > 33
message(3, I, "Case 2, i=" | %%i)
%%Mess5 = "Case 2, i=" | %%i
WRITE(DDOUTPUT2,%%Mess5)

case is >= 30
message(4, I, "Case 3, i=" | %%i)
%%Mess6 = "Case 3, i=" | %%i
WRITE(DDOUTPUT2,%%Mess6)

case else
message(5, I, "Case else, i=" | %%i)
%%Mess7 = "Case else, i=" | %%i
WRITE(DDOUTPUT2,%%Mess7)

end select
if %%i > 35 then
message(6, I, "Exiting for, i=" | %%i)
%%Mess8 = "Exiting for, i=" | %%i

33EngageOne Enrichment 7.4.1 Developer Guide

Enrichment Language Basics

WRITE(DDOUTPUT2,%%Mess8)
exit for
endif
next
</content>
</rule>

Logical Expressions

Logical expressions result in a value of TRUE or FALSE. These are represented as integers where
0 is FALSE and anything else (usually 1) is TRUE. Logical expressions are normally used within IF
THEN ELSE instructions. They include:

• Expressions combined with the comparison operators. For a complete list of operators, see
Operators on page 25. For example:

IF %%x = %%y THEN
IF %%x = %%y + %%z THEN

• Expressions combined with the Boolean operators. For a complete list of operators, seeOperators
on page 25. The AND and OR connectors combine two expressions, while the NOT connector
negates the single expression following it. For example:

IF %%w = %%x AND %%y > %%z THEN

(The condition is TRUE if both %%w = %%x and %%y > %%z.)

• A logical function. For example:

IF CHANGED(%%y) THEN

IF THEN ELSE instructions can include other IF THEN ELSE instructions. These instructions can
be nested as deeply as is necessary.

Comparing Numbers

Numbers are always compared as numbers. Field variables are considered numeric if they only
contain blanks or numbers. Leading zeros are ignored. Therefore, the string 0005 equals 5.

34EngageOne Enrichment 7.4.1 Developer Guide

Enrichment Language Basics

Comparing Strings

If you do not specify <CHARACTERS> in the control file's Environment tag group, Enrichment uses
the binary values of characters to compare strings.

• On mainframe systems, characters are represented by the EBCDIC character set. In EBCDIC, the
lowercase characters have lower binary values than the uppercase characters.

• On UNIX, Linux, and Windows, characters are represented by the ASCII character set. In ASCII,
the lowercase characters have greater values than the uppercase characters. For example, the
word cat would compare as shown below.

Note: Trailing blanks are ignored when comparing strings. Therefore, "ABC " equals ABC.

As the following example shows, the EBCDIC hexadecimal value of the word "cat" may be
X'8381A3', X'C381A3', or X'C3C1E3' while the ASCII hexadecimal value of the word may be
X'636174', X'436174', or X'434154', each depending on how the word is capitalized.

cat < Cat < CAT cat < Cat < CAT
88A C8A CCE 667 467 445
313 313 313 314 314 314

EBCDIC Hexadecimal ASCII Hexadecimal
TranslationTranslation

You can use the <CHARACTERS> tag to avoid the hexadecimal translation differences and to enable
proper comparison of international characters.

Print Stream Commands

Print stream commands let you control document processing fromwithin the rule file. The commands
are:

<APPEND> Add an insert or input to the current document

<BANNER> Add a banner to the current document

<OUTPUT> Send the current document to a specified output

For information about these commands, refer to Enrichment Language Reference Guide and Print
Stream Commands.

35EngageOne Enrichment 7.4.1 Developer Guide

Enrichment Language Basics

Comments

Comments are non-process information contained in the control and rule files. Enrichment ignores
any text or symbols between the comment begin and end characters. You can nest comments and
place them anywhere in the control or rule file to provide an explanation of the code, make notes to
yourself or other developers, or to record the date, time, and author of the code.

Comments can be included in any of the following programming styles:

• /* comment text */

Comments can span multiple lines up to the closing */. This is helpful if you need to temporarily
comment out a block of lines for testing.

• <! comment text >

Comments can span multiple lines up to the closing >.

• // comment text

This comments the rest of the current line after the two slashes.

All three comment styles will work in both the rule file and the control file.

To comment out blocks of code, use the /**/ style, because the tag syntax <tag> may lead to an
incorrect closing of the <!> block of comments.

Note: To comment out a <GETFILE> statement you must use a double slash (//). You cannot
comment out a <GETFILE> statement using other comment markers (such as /*…*/).

Specifying Character Strings

Some tags and syntaxes include parameters with character string values. In most cases, you can
specify the string in one or more of the formats listed below. The table lists the valid specification
syntax for each format.

Note: If the string contains quotes, youmust double the internal quotes or Enrichment assumes
they terminate the string.

36EngageOne Enrichment 7.4.1 Developer Guide

Enrichment Language Basics

Table 5: Specifying Strings

NotesValid SyntaxFormat

If the literal string contains spaces or punctuation other than _ and :, you must
enclose it in single or double quotes.

If the literal string contains extended ASCII characters 0x80 - 0xFF, you must
enclose it in single or double quotes.

For mainframe, literal strings are stored in EBCDIC format.

For UNIX, Linux, and Windows, literal strings are stored in ASCII format.

text

or

'text text'

or

"text text"

Literal String

A'string' or a'string'ASCII

Binary strings can contain only the characters 0 and 1.B'string' or b'string'Binary

E'string' or e'string'EBCDIC

Hexadecimal strings can contain only the numbers 0 through 9 and the letters
A through F.

X'string' or x'string'Hexadecimal

A symbolic string can be any mnemonic AFP structured field ID.

Space can be a delimiter in 'x=# y=#'.

You can insert 'x=# y=#' or just one of the values.

s'string' or s'x=# y=#'Symbolic

Specifying Files

To specify a file in Enrichment you use the conventions of the operating system as described in the
following sections.

Specifying Files on Mainframe Systems

Mainframe file names can be up to 55 characters in any of the following formats:

• <tag> DD:ddname
• <tag> DD:ddname(member)
• <tag> 'qualifier.qualifier.qualifier'

37EngageOne Enrichment 7.4.1 Developer Guide

Enrichment Language Basics

• <tag> 'qualifier.qualifier.qualifier(member)'

Where:

• ddname is the data definition of the file in your JCL
• member is the member name of a PDS
• qualifier is a node of a data set

Alternatively, mainframe file names can be specified in this format:

<tag> JES:DD:ddname

Where ddname is the data definition of the file in your JCL. To access the JES2 spool use <FILE>
JES:DD:ddname. The ddname contains one record to identify the spool file in the following
comma-delimited format:

JobNumber,JobName,StepName,ProcName,DDName

Where:

• JobNumber is the job that created the JES file
• JobName is the name of the job that created the JES file
• StepName is the name of the job step that created the JES file
• ProcName is the name of the procedure used, if applicable
• DDName is the name of the DD that specifies the JES file

You can omit ProcName by placing two commas after StepName.

Note: In rule files, quotation marks indicate a word or phrase that contains blanks or special
symbols. Therefore, when using mainframe file specifications in rule files, you must surround
fully-qualified file names with double and single quotation marks so that the single quotation
marks will be kept with the file specification.

Specifying Files On UNIX and Linux

On UNIX and Linux, make directory and file specifications in Enrichment control files as follows.

<tag>/dir1/K/dirn/filename

Where <tag> is the Enrichment control file tag or rule file language component that precedes the file
specification.

All directory specifications (dir1, dir2, and so on) and file names can be up to 255 characters in
length.

Note: UNIX and Linux Enrichment users can utilize pipes to point input data to different
outputs without changing the control file.

38EngageOne Enrichment 7.4.1 Developer Guide

Enrichment Language Basics

If you do not begin the file specification with a slash (/), Enrichment assumes the file specification is
relative to your home directory. If you begin the file specification with a slash (as shown in the
example), Enrichment assumes the file specification is relative to the root directory. UNIX and Linux
file and directory names are case-sensitive. Therefore, the directory or file "Accounting" is different
from the directory or file "accounting".

If you use quotes to specify a file name, Enrichment will take whatever is between the quotes as the
filename.

Specifying Files On Windows

On Windows, make directory and file specifications in Enrichment control files as follows:

<tag> d:\dir1\K\dirn\filename

Where <tag> is the Enrichment control file tag or rule file language component that precedes the file
specification:

• To specify directories and files that include spaces in their names, enclose the entire directory and
file name in quotes. You can use either single quotes (') or double quotes ("). Any tag that takes a
file name as a parameter can have the name enclosed in quotation marks, even if there are no
spaces in the directory or file name.

• The drive specification (d: in the example above) is optional. If you omit the drive specification,
your current drive is assumed.

• The total size of all directory names and the file name can be up to 255 characters.

Note: OnWindows, you can use pipes to point input data to different outputs without changing
the control file.

If you do not begin the file specification with a backslash (\), Enrichment assumes the file specification
is relative to your current directory. If you do begin the file specification with a backslash, Enrichment
assumes the file specification is relative to the root directory.

Pipes for UNIX, Linux, and Windows Users

UNIX, Linux, and Windows users can utilize pipes to redirect input to different outputs (such as to
the screen, to an output file, or to another program) without changing the control file.

Note: | is the pipe symbol.

• If the <FILE> tag used in the <INPUT> group is <FILE>| the data will be read from standard
input.

39EngageOne Enrichment 7.4.1 Developer Guide

Enrichment Language Basics

• If the <FILE> tag used in the <OUTPUT> group is <FILE> | the data will be written to standard
output.

An example of a control file that uses pipes is shown below.

<! Rule File: pipe.ctl >
<! Author: Precisely >
<! Purpose: How to use pipes for input and output. >
<INPUT>

<NAME> INPUT_FILE
<FILE> |
<TYPE> P
<DOCUMENT> 1
<FIELD> %%NAME R

<LOC> 2 1 3
<REPLACE>* YES

</FIELD>
</INPUT>
<RULE>

<CONTENT>
IF %%NAME='JIM' THEN
%%NAME='JAMES'
ENDIF

</CONTENT>
</RULE>
<OUTPUT>

<NAME> OUTPUT_FILE
<FILE> |

</OUTPUT>

Specifying Measurements

Some tags include the units parameter. Unless otherwise indicated, units is an optional parameter
that defaults to IN (inches). Enrichment recognizes the following units values:

• IN (Inches)
• MM (Millimeters)
• CM (Centimeters)
• POINTS (Points)
• PELS (Pixels)

Measurements for which you set units to IN, MM, and CM can contain up to three decimal places.
You must specify measurements for POINTS or PELS as integers, except for PostScript where the
measurement may contain a decimal value.

40EngageOne Enrichment 7.4.1 Developer Guide

Enrichment Language Basics

If you specify the measurement in anything other than pels, Enrichment converts the measurement
to pels based on the value in the <DENSITY> tag.

Note: If you do not specify a units value on a tag for which you specified a measurement,
Enrichment assumes the measurement is in inches.

Regardless of the units value, Enrichment processing messages indicate most measurements in
pels.

• In AFP environments, 240 pels typically equals one inch
• In DJDE environments, 300 pels typically equals one inch
• In PCL environments, 300 pels typically equals one inch
• In PDF environments, 72 pels typically equals one inch
• In PostScript environments, 300 units typically equals one inch

Note: In all environments, the <DENSITY> tag can affect or set how many pels equal one
inch.

41EngageOne Enrichment 7.4.1 Developer Guide

Enrichment Language Basics

3 - Developing an
Application
This section describes the high-level process of developing an Enrichment
application.

In this section

Application Development Process..43
Processing Flow...49
Input and Output...56
Developing a Control File...75
Developing a Rule File...80
Working with User-Written Functions...88
Utilities..105

Application Development Process

This section describes the high-level process of developing an Enrichment application.

Necessary Skills

Typically, one person can fully implement an Enrichment application. Factors that can affect the
success of the development effort include the complexity of the application, the required and available
resources, and the expertise of the application developer.

In addition to Enrichment proficiency and depending upon the application itself, the developer may
require expertise or assistance in the use of inserter machines, postal regulations, address cleansing
and postal presort software, print resources, document design, and supplemental data file creation.

Identifying User Requirements

To develop an application, you need to know the user requirements. Depending upon the complexity
of the application, you may want to write a formal functional specification. The key tasks in defining
a functional specification for an Enrichment application are:

Identify Print Stream Types

Enrichment fully supports impact, AFPDS, AFP line-data, AFP mixed data, Metacode, DJDE, PCL
PDF, and PostScript print streams. Limited Enrichment processing may be possible with other print
stream types. The procedures for extracting data from and adding data to documents vary depending
on the type of print stream.

Identify Printer Types

Capabilities for using fonts, drawing barcodes, and doing overlays vary among printers. Before
starting an application, you must understand the printers used and their limitations. If you combine
print streams from separate applications, the printer must be compatible with each of the print stream
formats used. For example, you cannot combine AFP print streams with DJDE print streams without
first performing a process (external to Enrichment) that converts the AFP print streams to DJDE or
vice versa.

43EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

Identify Input Processes

Enrichment is capable of performing a host of functions. Generally, these fall into the categories
below. You should identify all functions your Enrichment application is to perform before development
begins.

• Add, move or delete text
• Add, move or delete barcodes
• Standardize addresses according to CASS™ regulations
• Add ZIP + 4® and POSTNET™ barcodes
• Consolidate multiple documents into a single document (for example, consolidate all documents
going to the same address)

• Merge multiple print streams into a single print stream (commingling)
• Add overlays to a document
• Access a relational database for queries or updates
• Add electronic inserts and banner pages to a document or build custom documents
• Personalize documents with variable values
• Use postal Presort or other software to sort documents within a print stream
• Reorder the pages within each document
• Convert to multiple-up or duplex formats
• Divide the documents into multiple outputs at user- or system-defined points
• Route each document to one or more outputs
• Create one or more extract files or report files
• Create a Reprint Index for use with Reprint
• Create side files for use as Mail Run Data Files (MRDFs) for finishing systems
• Add color to the document (AFP, Metacode, PCL, and PostScript print streams only)

Preliminary Design

The next step in developing an Enrichment application is to identify which Enrichment functions are
necessary to meet the user requirements. As you define the functions to use, you should familiarize
yourself with the input print streams you will process so that you can find the information Enrichment
requires.

Key tasks in defining the functional requirements include identifying the following:

New Page Indicators in Each Document

Enrichment can automatically identify page breaks for most print stream types. However, if you work
with non-AFPDS inputs that have non-standard carriage controls, contain more than one logical
page on each side of a physical page, or use record counting to determine pages, you must identify

44EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

some criterion by which Enrichment will recognize the top of each page. Typically, you can use a
field that contains data unique to the top of each page (for example, a customer number).

New Document Indicators

If your input print streams contain more than one document, you must identify some criterion by
which Enrichment will recognize the top or bottom of each document. Typically, you can use a field
that contains data unique to the first or last page of each document (for example, a customer number),
or—if each document is a specific number of pages in length—you can specify that number.

Note: You can specify multiple top- or bottom-of-document criteria. Refer to the <DOCUMENT>
tag discussion in the Enrichment Language Reference Guide for more information.

Note: You can specify multiple top- or bottom-of-document criteria. Refer to the <DOCUMENT>
tag for more information.

Document Data Fields

You should identify data to extract from the documents. If you process multiple types of documents,
you should indicate the data extraction process for each.

Finishing Barcode Contents

If you want to add barcodes to documents, you must identify the data items to use to create the
barcodes and the location of the barcodes on the page. If the barcode does not go on every page,
specify the pages on which to place it. If you use multiple finishing systems, specify the barcode
contents and positions for all possible cases.

Added Text Contents

If you want to add text to documents, identify how Enrichment should select and develop the text.
Indicate the font and color to use and the text position. If the text does not go on every page, identify
the pages on which to place it.

Address Certification Process

If you want to CASS™-certify (cleanse) addresses, specify the cleansing software to use. Designate
the processes for handling corrected, invalid, and uncorrectable addresses.

Consolidation Fields

If you want to consolidate multiple print streams into common envelopes, designate the data items
to match (such as customer number, customer name, address, and so on).

45EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

Banner Pages, Electronic Inserts, and Overlays

If you want to add banner pages, inserts, or overlays to documents, specify the file names and
conditions under which to add them. Note if the insert is to be assembled in a particular position or
order within the document. Banners and inserts can contain variable “fill-in-the-blank” items to be
completed by Enrichment. Identify any such variables to be processed in the inserts or banners.

Note: Youmust prepare banner pages, inserts, and overlays outside Enrichment. They should
be in a format consistent with the print stream to which they will be added.

Variable Items to Replace

If you want to personalize documents, identify the variables to replace and the source of the variable
data.

The Postal Presort Process

If you want to perform postal presort, identify the presort software to use.

Sort Criteria

If you want Enrichment to change the order of the documents, specify the sort criteria.

Page Order

If you want Enrichment to change the order of the pages in a document, specify the reorder sequence.

Extract File Contents

If you want Enrichment to create a side file, specify the data items to extract and their positions in
the file.

AFP Index Contents

If you want Enrichment to create an AFP Index, specify the data items to use in it.

Reprint Index Contents

If you want Enrichment to create a Reprint Index, specify the data items to use to select documents
for reprinting.

46EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

Inserter Control Data File Contents

If you want Enrichment to create inserter control data files, specify the information to record for each
document.

The Output Files to Create

Designate each output. If you want Enrichment to create more than one output, specify the criteria
for routing documents to each output. If an output has a maximum size threshold (total documents),
specify the criteria for breaking the output.

Building the Application

Generally, you will use the following process to develop an Enrichment application.

Note: You can use Enrichment Visual Engineer to interactively develop the application. Visual
Engineer is a development tool that enables both IT and document production staff to analyze
print streams and build and test Enrichment applications.

Step 1: Create a control file for the application

For instructions on creating a control file, refer to Creating a Control File on page 75. Enrichment
can performmost functions and combinations of functions in one pass. However, it may be convenient
or necessary to run Enrichment in multiple passes. In this case, each Enrichment pass requires a
separate control file.

Step 2: Create a rule file

If you want Enrichment to perform conditional processing, you must create a rule file. For more
information, refer to Creating a Rule File on page 81.

Step 3: Write or identify any external functions

If you want Enrichment to call any external functions, write them or identify which existing functions
will be called. For more information, refer to Using User-Written Functions on page 89.

Step 4: Create supplemental data files

If the documents being processed do not contain all of the necessary customer data, create a variable
data file and specify it as an input. You can also use data files to perform case-driven document
assembly if you are not using input print streams. In this case you must create a data file containing
all pertinent customer information.

47EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

Step 5: Create electronic inserts or banners

If you want Enrichment to add electronic inserts or banners, you must first design and create them.
You should store electronic forms and overlays in the mainframe, UNIX, or Windows file system.

Step 6: Create printer resources if necessary

You may need to create and store forms, overlays, and fonts (including POSTNET™ and Code 3of9
fonts).

Note: Enrichment does not normally create or manipulate printer resources associated with
print streams. Using, <RESOURCESCAN> and <RESOURCEOUTFILE>, Enrichment can
modify inline AFP resources and export them.

• Xerox resources are stored on the printer’s fixed disk.
• AFP resources are stored in libraries on the system.

Testing the Application

You should set up the application initially as a stand-alone process. Copy sample input print streams
into a test area for application development, then modify your script so that it includes all files and
Enrichment modules necessary for the application.

For information about running your application, refer to:

• Running on Mainframe Systems on page 201
• Running on UNIX on page 205
• Running on Windows on page 207

See also: Troubleshooting an Application on page 219 and Testing Performance on page 221.

Moving the Application to Production

After you successfully test your application as a stand-alone process, you can move it to production.
To move the application to production:

1. Modify the script for the existing process to include the appropriate Enrichment steps.
2. Include the stand-alone script for the Enrichment steps in the job schedule.
3. Follow your change control procedures to migrate the updated script into production.

48EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

Processing Flow

Enrichment processes your application in a specific manner depending on the types of print stream
manipulations that your application performs. Enrichment automatically picks the method based on
the functions being performed in the application. There are three types of processing that can occur:

• One-at-a-time processing
• All-at-a-time processing without presort
• All-at-a-time processing with presort

It is critical that Enrichment application developers fully understand these processes to code effectively.
The key points for application developers to remember are:

• The order of the steps is important, especially when processing occurs for rule file sections.
• Some steps create data that is saved in system variables (non-user-defined variables set by
Enrichment). For example, the CASS step produces variables that contain the cleansed address
lines. You should not use system variables in Enrichment steps that occur prior to the step in which
the system variable is populated with a value (so, you should not use CASS system variables in
the START section of the rule file, for example).

• In both all-at-a-time processing methods, Enrichment reads and stores all documents in memory
before processing them. This requires more memory and I/O than one-at-a-time processing.

Processing Steps

The steps in Enrichment processing are listed below. Not all steps are performed for each of the
three processing types. See the diagrams in Process Flow Diagrams on page 52 to find out which
steps are performed with each type of processing.

Validate Control File and Compile Rules

When you run Enrichment, it first conducts a complete scan of the control file and rules to ensure
their validity.

Validation for the control file includes checking that all tag groups begin and end properly, are nested
properly (when appropriate), and contain properly coded tags. Control file validation also checks for
the existence of all named files. Enrichment then adds any messages returned from the validation
process to the Enrichment Report file. Any severe error conditions halt processing when they occur.

Rule file compilation includes syntax checking for all rules and functions, as well as confirmation that
named files exist on the system. Again, Enrichment records error conditions in the Enrichment Report
file and halts processing if a severe error occurs.

49EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

Run START: Rules

Enrichment initializes variable values. The START: section of the rule file runs once per application.

Read and Analyze One Document

Enrichment performs any print stream analysis tasks coded into the control file. Typical print stream
analysis tasks include:

• Identifying individual documents and pages within the print streams
• Identifying data to be read or extracted from the print streams
• Finding address information within the print streams

CASS™ Cleanse Address

If the control file contains a CASS tag group, Enrichment passes addresses to the specified address
hygiene software. The cleansing software returns a new (cleansed) address and certain return codes.

Store Document

The contents of each document and its associated variables are temporarily stored for future access.

Sort Documents by ZIP Code™ and Call a CASS™ tool

If the control file contains a CASS tag group and the <DOUBLESORT> tag is set to YES, Enrichment
performs <DOUBLESORT> tag functions to sort print data by ZIP Code™, then uses the specified
address hygiene software to cleanse addresses.

Sort Documents by <SORTMATCH>

If the control file contains a Sortmatch tag group, Enrichment sorts documents within the print streams
into the specified order.

Match Multiple Inputs

If matching is specified in the Sortmatch tag group, Enrichment matches documents appropriately.
For additional information, refer to the section on the Sortmatch tag group in Enrichment Language
Reference Guide.

Retrieve One Document from Storage

The contents of each document are read from temporary storage.

50EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

Run DOCUMENT: Rules

Enrichment processes rules, built-in functions, and user-written functions in the DOCUMENT: section
of the rule file. Enrichment processes DOCUMENT: rules once for each document.

Add Electronic Inserts

If the control file contains the Insertrec and/or Insertpage tag groups, Enrichment inserts the
appropriate information at the designated locations in the documents.

Write Presort Record to <SORTFILE>

If the control file contains a Presort tag group, Enrichment writes a record composed of Presort sort
parts to the Presort Index file.

Presort

As appropriate, Enrichment calls a program to presort documents in the output print streams.
Enrichment can call any external program including a sort program.

Run PRESORTED: Rules

Enrichment processes PRESORTED: section rules for each document the presorted output.

Prepare Output Document

Enrichment prepares the output print streams according to Output group tagging.

Run PAGE: Rules

Enrichment processes the PAGE: section rules once for each page in each output document.

Write One Page to Output

With all other processing complete, Enrichment writes the document page to the output file.

Write Sidefile Record or Index

Enrichment creates any index files (such as the AFP Index or the Reprint Index) or side files defined
in the control file.

51EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

Run FINISH: Rules

Enrichment processes the FINISH: section rules (write reports, banners, and so on). Enrichment
processes FINISH: rules once per application.

Summarize Processing

Enrichment summarizes the entire processing run in the Enrichment Report file.

Process Flow Diagrams

The diagrams below illustrate the three types of Enrichment processing. Steps that are required for
every Enrichment application are indicated with a check mark. The boxes shaded in gray indicate
specific parts of the rule file.

Some steps are not represented in these figures. For example, banner pages can be added in several
places with the rule file. Also, not all of the steps represented are required. For example, if you do
not have a CASS tag group in your control file, Enrichment does not call CASS™ software to
standardize the addresses.

52EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

One-at-a-Time Processing
One-at-a-time processing means that Enrichment completely processes one document in the input
before moving to the next document. Enrichment uses one-at-a-time processing when document
order in the print stream does not need to be altered (that is, when you do not need to sort, match
or double sort documents within an input). The diagram below illustrates the one-at-a-time processing
flow.

53EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

All-at-a-Time Processing without Presort
All-at-a-time processing without presort occurs when you modify the document order (sort, match
or double sort) but do not perform presort processes on the output. The diagram below illustrates
the processing flow for all-at-a-time processing without presort.

54EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

All-at-a-Time Processing with Presort
All-at-a-time processing with presort occurs when you modify the document order (sort, match or
double sort) and presort processes are performed on the output. The diagram below illustrates the
flow for all-at-a-time processing with presort.

55EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

Using Multiple Enrichment Runs

Enrichment can perform many functions in a single pass. However it may be more convenient to
process some applications using more than one Enrichment run. In fact, some complex applications
may require that you run Enrichment more than once. The following shows a simple example in
which two Enrichment runs create customized documents and combine these documents with the
output from another business application.

Input and Output

Enrichment requires at least two files for input: a control file (the Enrichment application code) and
an existing print stream file. From these, Enrichment creates two or more output files: the Enrichment
Report and an enhanced print stream. The diagram below illustrates the minimum input and output
for an Enrichment application.

56EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

Optional inputs to Enrichment include:

• Multiple input print streams to combine
• Supplementary information, including inserts and banners, to use as added pages or added records
• A rule file for conditional processing
• Postal presort parameter files
• An address database
• (Mainframe only) Temporary Virtual Storage Access Method (VSAM) file for Enrichment I/O
processing

Optional outputs from Enrichment include:

• Multiple enhanced output print streams, output page ranges, or convenience breaks
• Multiple side files per output, including Reprint Indexes and AFP Indexes, that contain user-specified
information about each document in the output

• Postal address cleansing and presort reports can be included in Enrichment output when an address
cleansing or postal presort product (such as Finalist or Mailstream Plus) is called from Enrichment

Enrichment can also read and write external sequential or VSAM files and can access user-written
functions.

The following diagram fully illustrates the input and output types.

57EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

Specifying an Input Print Stream

An Input tag group defines one print stream to process in your application. You must place one Input
tag group in the control file to identify each print stream. The Input tag group begins with the <INPUT>
tag and ends with the </INPUT> tag. Neither tag has parameters.

The following tags are used to define the basic attributes of a print stream. Refer to the Enrichment
Language Reference Guide for more information on these tags and for a complete listing of all Input
tag group tags.

• <FILE> The path and file name of the input print stream.
• <NAME> is a unique reference name for the input print stream. You use this reference name to
identify the input in other Enrichment tags. The <NAME> tag value cannot contain spaces. For
example, if your input print stream contains first quarter dividend information, you might code the
<NAME> tag as follows:

<NAME> DIVIDENDS_1Q2006

• <TYPE> identifies the format of the input print stream. For example, AFP line data, DJDE, Metacode,
etc.

58EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

• <RECORD> If you are developing applications to run on UNIX, you must use the <RECORD> tag in
your Input group to identify how to read the input print stream. The <RECORD> tag defines the
characteristics of record length indicators in an input or insert so that UNIX can properly identify
individual records.

• <HEADER> The Input group <HEADER> tag identifies a number of header lines to skip in the input
print stream before the first document and whether to keep the header information when the output
stream is written (that is, whether to add the header information to the top of the output print stream).
Within Metacode print streams, the <HEADER> tag is often used to capture the DJDE printer and
job setup instructions that occur before the first document. Refer to the Enrichment Language
Reference Guide for a complete discussion of the <HEADER> tag.

• <IDEN> specifies the criteria by which Enrichment recognizes DJDE records in a print stream.

Defining Page Breaks and Document Breaks

To properly process your print stream you need to indicate where one document stops and another
starts. You may also define where the page breaks are within each document, or you can let
Enrichment identify page breaks automatically.

A common mistake in print stream analysis is defining the top or bottom of a document somewhere
other than the first or last page of the document. This mistake is especially common when the user
specifies a <PAGE> tag and Enrichment does not determine pages automatically. As the following
figure illustrates, the control file must meet two conditions to ensure proper document and page
definition:

• The first <PAGE> tag location (or the first automatic page break) must occur on the first record of
the first document in the print stream.

• The <DOCUMENT> tag location that identifies top-of-document must occur before the condition that
causes page 2 (that is, it must occur on page 1). If you are defining bottom-of-document, the
<DOCUMENT> tag location must occur on the last page of the document.

59EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

Defining Page Breaks

Enrichment can automatically identify pages in most types of print streams (that is, it can identify
pages without using tags). It does so by looking for an ANSI carriage control of 1 or a machine
carriage control of X8B or X89 in column 1.

Note: You must use a Field group <REFERENCE> tag to locate any field used to specify
top-of-page since it cannot be located from the top of the page (because the page is not yet
defined).

If you do not want Enrichment to automatically determine page breaks in your print stream (for
example, if you have multiple logical pages all of which use carriage control 1 in column 1 on one
physical page), you must use a <PAGE> tag to identify top-of-page. For more information, see the
Enrichment Language Reference.

60EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

Defining Document Breaks

An input can contain one or more documents. A document is a group of pages to be sent to the same
customer or destination. Enrichment processes the pages of a document together.

Note: Enrichment allows multiple <DOCUMENT> tags in an Input group. If an input contains
multiple types of documents, you can specify multiple <DOCUMENT> tags to locate each
document type.

If your inputs contain more than one document, you must identify some criterion by which Enrichment
will recognize the first or last page of each document. If each document contains a specific number
of pages, you can specify that number. Or, you can use a field that contains data unique to the first
or last page of each document (for example, a customer number).

Use the <DOCUMENT> tag to identify documents in an input. For more information, see the Enrichment
Language Reference Guide.

In the following figure, a <FIELD> tag is used to watch for an occurrence of Page 1 in a document.
The <DOCUMENT> tag tells Enrichment that Page 1 indicates the first page of each document. The
specified field may be anywhere on the page.

Identifying Fields on a Document

Data items on a document that Enrichment will use or update, such as the customer name, are called
“fields”. With the exception of rules, fields are the most important and most versatile tool you use to
develop Enrichment applications. Fields define information to extract from the document for use in
sorting, adding objects, creating side files, finding address information, creating the presort index,
defining top or bottom of document and top of page, and in rule files.

Use the Field tag group to specify the instructions for processing a field. Generally, these instructions
tell Enrichment to extract a data item into a specified variable and, optionally, to update the print
stream if the value of that variable subsequently changes. The Field tag group also identifies how
to locate and extract the data.

61EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

Since a field is part of a print stream, the Field tag group belongs in an Input tag group. You must
define one Field tag group for each data item to select. A number of tags comprise the Field group,
but the tags required in every Field group definition are:

• <FIELD> specifies a variable name for the field, actions to take on the field, and how to handle
leading and trailing spaces.

• <LOCATION> defines where the field is located within the document.

Defining a Fixed Position Field
The easiest way to define a field is to specify its name and location using the syntax shown in the
following example.

Note: The method shown below is valid only for line data print streams. You cannot specify
print positions for AFPDS or Xerox Metacode data.

<FIELD> fieldname
<LOCATION> row column length

</FIELD>

You can use this method when the field information always occupies the same position on the printed
page.

For example, assume you have an impact print stream in which you must determine what kind of
insurance policy each client receives so you can outsort each policy based on type. As shown in the
following example, the policy type information is always in column 23 of the fifth line on the page.
The longest policy type is 10 characters in length (AUTOMOBILE).

In this case, you could identify the Field group as shown in the following example.

<FIELD> %%Policy_Type
<LOCATION> 5 23 10

</FIELD>

Defining a Reference Field
When data does not appear in the same position on the printed page but is relative to another piece
of unique data on the page, you can use the <REFERENCE> tag to define a reference point. The
<REFERENCE> tag defines the following:

• A carriage control that identifies records on which to search for the reference

62EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

• Reference text for which to search
• The start column of the text

For complete information, see the Enrichment Language Reference Guide.

When you use a <REFERENCE> tag, Enrichment automatically sets the location of the field information
relative to the reference point. As the following figure shows, this adjusts <LOCATION> tag syntax
so that the row value defines the vertical offset of the field information relative to the reference line
or record. Likewise, the column value defines the horizontal offset of the field information relative to
the end of the reference point.

Note: The <LOCATION> tag column value is always measured from the beginning of the last
character of the reference point.

As this figure shows, set row to a negative number if the field information is the indicated number of
lines or records above the reference record. Set row to 0 if the field information is on the reference
record. Set row to a positive number if the field information is the indicated number of lines or records
below the reference record.

Similarly, if you set the column parameter to a negative number, the field information begins that
many characters before the beginning of the last character of the reference point, and so on.

For example, you might need to extract the account number from each bank statement you process.
In the following figure, the location of the account number varies horizontally depending on the type
of account and the number of transactions the customer has. The phrase Account Number:
appears three spaces to the left of the account number, wherever it occurs on the page. The account
number is always 12 characters in length. You could define a Field group as shown in the following
figure to pick up the value.

63EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

<FIELD> %%Account_Number
<REFERENCE> * 'Account Number:'
<LOCATION> 0 3 12

</FIELD>

Since the account number does not occur with regularity on any specific record or line, the
<REFERENCE> tag instructs Enrichment to search on all records for Account Number:. The account
number’s position can also vary from column to column, so no start parameter is specified on the
<REFERENCE> tag.

The 0 after the <REFERENCE> tag indicates that the account number is on the same record as the
phrase Account Number:. The 3 indicates that the account number begins on the third character
position after the colon in Account Number:. Since the account number is 12 characters in length,
the length parameter is set to 12.

Note: To set the value of the field to the reference string, set the <REFERENCE> tag as follows:

<LOCATION>0 -x y

where x = length -1 and y = length.

Fields in Composed Print Streams

Metacode and AFPDS are “composed” print streams. They contain print control codes and other
information that require different techniques to process using Enrichment. The Field tag group has
several features to accommodate composed streams.

Finding Fields on Data Records Instead of Print Lines
You can set the Field group <LOCATION> tag’s method parameter, which defines whether you
specified the row value in print lines or data records, to LINE or RECORD. Print lines are the actual
lines on which data prints on the page. Data records are the rows viewed when browsing or editing
the data file online. The method parameter is only valid for ANSI or machine code line data. The

64EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

default method value for line data (that is, for impact, AFP line, AFP mixed, and DJDE data) print
streams is LINE. For AFPDS, Metacode, PCL and PostScript print streams, method is always
RECORD.

Generally, you would only set the method parameter to RECORD for AFPDS or Metacode data. In
fact, setting method to RECORD for line data only works if the record numbers stay the same for
the entire input. Assuming that is so, you could use the tagging shown below to define a field whose
value is the amount in the line data input shown in the diagram above.

<FIELD> %%Check_Amount
<LOCATION> 4 35 7 RECORD

</FIELD>

Finding Fields on Particular Pages
You can restrict the pages on which Enrichment searches for a field by using the Field group
<ONPAGE> tag. Refer to the Enrichment Language Reference Guide for further information.

You can specify a single page or a range of pages in the <ONPAGE> tag, depending on where you
want the field information acted on. For example, to act on all occurrences of a field from page 2 to
the next-to-last page of each document, you could set the <ONPAGE> tag to:

<ONPAGE> 2 L-1
or
<ONPAGE> M

Thus you can identify which pages to affect the field on without having to know the actual number
of pages for each document and without each document having to have the same number of pages.

Extracting Fields Based on End Criteria
Typically, field information is extracted by picking up a specific number of characters (in impact,
DJDE, AFP mixed, or AFP line print streams) or by picking up text until the length parameter value

65EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

is met or an AFP code or Metacode occurs (in AFPDS, AFP mixed, or Metacode print streams). You
may need to pick up data that contains AFP codes or Metacode commands or that occurs before a
specific string, or you may need to pick up data until the end of a record. In such cases, AFP codes
or Metacode commands that occur within the data to be picked up must be removed so the data can
be used for sorting, address cleansing, and so on.

The Field group <TEXTUNTIL> tag enables you to pick up field information until a specific condition
is met or until the <LOCATION> tag length parameter value is met. Each AFP code or Metacode
within the extracted field information is treated as a single space in the text. <TEXTUNTIL> tag syntax
is:

<TEXTUNTIL> type [value units]

The type parameter specifies when Enrichment should stop picking up field information (that is, when
it should stop reading hexadecimal codes or Metacode commands as spaces, thus ending the field
information). For information on the valid type parameter settings, see the Enrichment Language
Reference Guide.

Note: Do not specify value if you set the <TEXTUNTIL> tag type value to RECORD or TEXT.

The value parameter defines a specific point at which Enrichment should stop picking up field
information.

• If you set type to X, XR, Y, or YR, value specifies a size in units. If Enrichment encounters a move
of this size or greater, it stops picking up field information.

• If you leave value blank for type X, XR, Y, or YR, Enrichment stops picking up field information at
the first move encountered.

• If you set type to STRING, value specifies the string at which Enrichment should stop picking up
field information. If the string contains spaces, you must enclose it in single or double quotation
marks.

The units parameter defines the units in which the value you specified is set. Use the units parameter
only if you set type to X, XR, Y, or YR.

When you use the <TEXTUNTIL> tag, Enrichment counts each hexadecimal code or Metacode in
field information as a space, up to the limit specified in the tag or until the field information reaches
the length specified in the <LOCATION> tag.

For example, to pick up the city, state, and ZIP Code™ information from the AFPmixed record shown
below for address cleansing, you would specify <TEXTUNTIL> X in the Field group.

K0DLexington,0C01KY0C010F0405030C01K
KCB 4508 450E316 473AK

For this example, <TEXTUNTIL> X specifies that Enrichment should stop picking up data when it
encounters an absolute x move in that data. Therefore, Enrichment stops picking up data at

66EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

X'04C7031A'. Enrichment reads intervening AFP codes (X'04C50018', X'04C5001E' and X'03F106')
as spaces, so the field information is:

Lexington, KY 40503

Hexadecimal and Binary References
Generally, you use the <REFERENCE> tag to identify a reference point in Metacode in the same
manner as you would for line data, with one important difference. Because Metacode controls are
represented in hexadecimal format, you will probably need to specify references to Metacode
commands and associated data in hexadecimal or binary format so Enrichment can locate it. For
example, the Field tag group shown below tells Enrichment how to find the field information for an
address line in Metacode data.

<field> %%Addr1 K
<reference> x'01' x'8D0104A50B' 3
<location> 0 43 30

</field>

In the <reference> tag above, the cc parameter value is x'01', indicating that Enrichment should
look only on records with a carriage control of x'01' in column 1 for the reference point. The reference
text for which Enrichment is to search is x'8D0104A50B'.

Replacing Fields and Substituting Inline Variables in Metacode Files
When Enrichment replaces fields in a Metacode input, the new value replaces the field differently
than in line data. If you set the <REPLACE> tag expandYN parameter to YES and the field information
begins in text, information to the right of the field moves left or right to accommodate the full length
of the new field value. The text displaced by field replacement in a Metacode input does not wrap
or reflow.

Similarly, when Enrichment substitutes an inline variable in a Metacode input, it inserts the value in
place of the variable name. The displaced text does not wrap or reflow. Inline variables must normally
be in ASCII format in Metacode data.

If, as shown in the diagram below, the field information or variable value is wider than the space
occupied by the placeholder and text follows the placeholder on the same line, that text moves to
the right. If replacing a field or substituting a variable forces other text on the same line past the right
margin, such text continues into the right margin and possibly off the page.

67EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

Conversely, if the field information or variable value is narrower than the space occupied by the
placeholder and text follows the placeholder on the same line, the text moves to the left, as shown
below.

Fields in AFP Records

When working with fields in AFP records, note the following:

• When you extract a field from an AFP record, the field will end when a new AFP command is
reached or the maximum length is reached (whichever comes first). So, for example, if you are
picking up the text within a PTX record, the field will end when the next AFP command occurs or
when the length of the field is reached.

• The length indicators on the AFP record will automatically be adjusted when a field replace is used
to change the contents of a record.

68EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

• Normally, the text contents of PTX records are in EBCDIC (and are associated with an EBCDIC
code page). When AFP streams are created on the PC or UNIX system, these records may contain
ASCII data (because they are associated with ASCII code pages). You should use the <TYPE>
tag charset parameter to specify this case.

Reading Keyed Information from Files

You can obtain keyed data from files (or VSAM on mainframe systems) by using the LOOKUP and
LOOKUPV functions from the rule file. These high-level functions are designed to locate records within
a file that correspond to a specified key.

Note: You can only use the LOOKUPV and WRITEV functions on mainframe systems.

To use LOOKUP and LOOKUPV, call them from the rule file when you want to obtain supplemental
data. You need not open or close the files or be concerned with the actual mechanics of how
Enrichment reads the file. When you call LOOKUP or LOOKUPV, the function returns the complete
matching record. You should then parse out the data you need from the record.

These are key-based table lookups. You pass a key to the function, which looks in the file for a record
with a matching key. If it finds the key, Enrichment returns the matching record.

Updating Keyed Data Files

The WRITEV and UPDATE functions write data to keyed files.

Note: If you want to use WRITEV, you must set the LOOKUPV function access argument to
W (read/write).

Using the WRITEV Function to Update KSDS VSAM Files (Mainframe Only)
The WRITEV function updates existing VSAM files. You can use the WRITEV function to add, modify,
or delete records. One record is processed for each call to WRITEV. You must ensure that the records
are in the format expected by the VSAM file.

Enrichment can process any number of files simultaneously. As shown below, you can use WRITEV
with Enrichment to update VSAM files that are used with the LOOKUPV function.

69EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

Note: When a sequential file is updated, it is written out in optimized form (sorted with blank
records removed).

You cannot use the UPDATE function with tables.

/* Update the customer billed-to-date amount in the customer record */
%%custrec = LOOKUPV(DD:CUSTOMER,%%custnum) /* Get customer record */
%%billed = RGET(%%custrec, I, 10) /* Extract billed */

/* amount */
%%billed = %%billed + %%invoice_amount /* Increase billed */

/* amount */
%%custrec = RPUT(%%custrec, %%billed, I, 10)/* Put back in record */
%%result = WRITEV(DD:CUSTOMER, %%custrec, %%custnum)/* Update record */

Reading and Writing Record Data

The READ and WRITE functions read and write one record at a time from a file.

The READ function is normally used in the START: rules to initialize data or within the DOCUMENT:
rules to read files associated with each document to get additional data. Refer to the Enrichment
Language Reference Guide for more information on the READ function.

You can use WRITE to create reports, indexes or any other data on a sequential basis. Unlike the
Sidefile tag group process, you can use WRITE to write multiple records per document or to only
write records for some documents. The following illustrates the use of READ and WRITE in the rule
file.

START:
%%JOBNUM = READ(DD:JOBNUM) <! Get job number. >
%%OUTPUTFILE = ’FILE:’| %%JOBNUM | ’.RPT’ <! Set output file name. >
%%TOTALAMOUNT = 0

DOCUMENT:
%%CUSTINFO = %%CUSTNUM | %%INVOICE
%%TOTALAMOUNT = %%TOTALAMOUNT + %%INVOICE <! Add total invoices. >
WRITE(%%OUTPUTFILE,%%CUSTINFO) <! Write customer record.>

FINISH:
%%CUSTINFO = ’TOTAL: ’ | %%TOTALAMOUNT <! Write total record. >
WRITE(%%OUTPUTFILE,%%CUSTINFO)

In the START: section, Enrichment reads the value of %%JOBNUM from a file and uses it to establish
the name of the report file. In the DOCUMENT: section, Enrichment writes the invoice amount for each
customer to the report. In the FINISH: section, Enrichment writes the total invoices to the report.

70EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

Defining Output

The Output tag group identifies parameters for creating one or more output print streams. You must
place an Output tag group in the control file to identify each output from an Enrichment application.
The Output group begins with the <OUTPUT> tag and ends with the </OUTPUT> tag. Neither tag has
parameters. As the following figure illustrates, you can instruct Enrichment to break each output into
multiple files so that no file exceeds a certain size. You can also specify any number of report files
for each output file.

The Output tag group consists of several tags. Two of the most important are:

• <FILE> The path and file name for the output print stream. Each Output tag group can contain as
many <FILE> tags as necessary to identify files to hold the output.

• <NAME> A unique reference name for the output print stream. You use this reference name to
identify the output in other Enrichment tags. The <NAME> tag value cannot contain spaces. For
example, if your output print stream will contain year-end dividend information, you might code the
<NAME> tag as follows:

<NAME> YEAR_END_DIVIDENDS

For complete information on these and other tags in the Output tag group, see the Enrichment
Language Reference Guide.

71EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

Sidefile Tag Group
Use the Sidefile tag group within the Output group to identify a flat file (called a “side file”) and data
about each document in the output to write to the flat file. Side files are sometimes called data files
or extract files. Each Sidefile tag group creates one data file that contains one record for each
document processed in the specified output. You can use multiple Sidefile tag groups to create
multiple side files. The Sidefile group begins with the <SIDEFILE> tag and ends with the
</SIDEFILE> tag. Neither tag has parameters.

Note: Using multiple <SIDEPART> tags allows for automatic record formatting. Alternately,
you could use a single <SIDEPART> tag and format the record variable in the rule file.

The following figure shows a Sidefile tag group that creates an extract file that contains the customer
number, invoice amount, and the total number of pages for each document.

<SIDEFILE>
<FILE> C:\MyData\sidefile.txt
<SIDEPART> %%CUSTOMER_NUMBER 20 L
<SIDEPART> %%INVOICE 12 R 0
<SIDEPART> %%TOTAL_PAGES 4 R 0

</SIDEFILE>

In this sample code, Enrichment writes the side file to C:\MyData\sidefile.txt as specified by
the <FILE> tag. The customer number and invoice are user-defined variables, while
%%TOTAL_PAGES is a system variable determined by Enrichment.

Assuming the output contains three documents, the extract file created by the example might resemble
the data in figure below.

In the above figure, the value of %%CUSTOMER_NUMBER in the first record is 20 characters in
length, as defined in the <SIDEPART> tag. In each of the next two records, however, the
%%CUSTOMER_NUMBER value is less than 20 characters in length, so it is left-justified and padded
to the proper length with blanks. The %%INVOICE value has been right-justified and padded with
zeroes in each record, as has the %%TOTAL_PAGES value.

72EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

Adding an AFP Index to an Output

An AFP Index is a group of records added to the top of each document that can be used with IBM’s
AFP Viewer, Large Mailing Operations (LMO) System, OnDemand, or other systems to identify the
document and key information about it.

The layout and contents of the AFP Index are specified using the AFPIndex tag group within an
Output tag group. The AFP Index groups all pages of a document within Begin Named Group (BNG)
and End Named Group (ENG) structured fields. The contents of the AFP Index are the Tag Logical
Element (TLE) structured fields placed at the top of each document.

You can add multiple TLE structured field records to each document by specifying multiple variables
to include in the AFP Index. Each TLE record will contain:

• The title of the data item
• The system- or user-defined variable name

The AFPIndex tag group consists of three tags: <AFPINDEX> and </AFPINDEX>, which begin and
end the tag group, and <PART>, which identifies a variable to include in the AFP Index. The
<AFPINDEX> and </AFPINDEX> tags are required in the AFPIndex tag group, but they have no
parameters.

The following shows a sample control file used to create an AFP Index that contains the customer
name and page count for each document.

<input>
<name> Bills <! Internal name for input file>
<file> DD:INPUT1 <! JCL name for input file >
<type> A <! Field to determine each >
<field> %%Customer_Name KA <! document and to index by >
<reference> ! 'Customer Name:'
<location> 0 2 25

</field>
<doc> T %%Customer_Name C <! New doc when name changes >

</input>
<output>

<name> IndexedOutput <! Internal name for output >
<file> DD:OUTPUT1 <! JCL name for output file >
<afpindex> <! Info to make into TLE record>

<part> 'Customer Name:' %%Customer_Name 25<! User-defined val.>
<part> 'Total Pages:' %%TOTAL_PAGES 8 <! System variable >

</afpindex>
</output>

Because you place the AFPIndex tag group within the Output tag group, the AFP Index only contains
information about the documents written to a particular output.

73EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

Redirecting Input and Output at Run Time

UNIX and Windows users can redirect the input sources and output files by using pipes.

Note: "|" is the pipe symbol. For additional information on redirection see your Windows or
UNIX system documentation.

If the file parameter used in the <INPUT> group is <FILE>| the data will be read from the standard
input (STDIN) that you specify when Enrichment is executed, such as the keyboard. On UNIX,
standard input could also be a file or output from another program. To specify the input source, use
the following syntax when you execute Enrichment:

• To use output from another application as the input (UNIX only),

'sweaver < otherapplication'

• To use a file as input,

sweaver < filename

• To use input from the keyboard,

sweaver

If the filename parameter used in the <OUTPUT> group is <FILE> | the data will be written to the
standard output (STDOUT) that you specify when Enrichment is executed, which is typically the
display but could also be a file. To specify the output destination, use the following syntax when you
execute Enrichment:

• To send the output to another application (UNIX only),

'sweaver > otherapplication'

• To send the output to a file,

sweaver > filename

• To send the output to the display,

sweaver

74EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

Developing a Control File

A control file defines an application's input, output, and global actions (actions that you take on every
document). It defines the overall print stream processing environment. Each Enrichment application
requires one control file.

Key options configured in the control file include:

• Input file characteristics (such as type, field locations, and page and document break indicators)
• Rule file characteristics
• Added object size, content, and placement
• Information to control addition of pages
• Parameters for CASS Certified™ address cleansing
• Parameters for postal Presort processing
• Control information (such as supplemental data files, rule files, and inserts)
• Output file characteristics (such as name, separation requirements, and convenience break
parameters)

• Performance options

Creating a Control File

To create a control file, follow this general process.

1. Using either Visual Engineer or a text editor, create a new file. (For instructions on creating a
new control file in Visual Engineer, see the Visual Engineer online help.)

2. Define each input print stream.

• Use a separate Input tag group for each input print stream.
• Use Field tag groups to identify variable data to extract from documents.
• Use the Input group <DOCUMENT> tag to specify how Enrichment identifies the top or bottom
of a document.

• If necessary, use the Input group <PAGE> tag to indicate how Enrichment finds new pages.
• If you plan to CASS™ cleanse, presort, or locate the ZIP Code™ within an address, use the
Address tag group or the <ADDRESSBLOCK> tag to identify the variables that make up the
address components.

• Code additional performance or layout attributes as necessary to fully define the input print
stream.

3. Use the Insertpage and Insertrec tag groups to identify files (if any) that contain control records
or electronic inserts to add.

75EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

4. Use Add tag groups to identify objects (barcodes, forms, images, or text) to add to every output.
If the added objects vary based on the output, place the Add tag groups within the appropriate
Output group, as discussed in step 8.

5. Use the Sortmatch tag group to identify sort and match criteria for sorting and consolidating
documents.

6. Use the Rule tag group to identify the rule file for performing conditional processing, if any. For
more information on rule files, see Creating a Rule File on page 81.

7. Use the CASS tag group in conjunction with the Input group <CLEANSE> tag to specify postal
address cleansing requirements.

8. Use Output tag groups to identify the output files to create:

• Specify multiple file names if you do not want the individual files to exceed a certain size (in
bytes, lines, pages, documents, or trays) or use the <DYNAFILE> tag to automatically name
files that are dynamically allocated.

• If you want to conduct a presort, use the Presort tag group to indicate the method.
• Use the Sidefile tag group to indicate the names and contents of any extract files and Reprint
Indexes to create.

• Use the Output group <FILEMAX> tag to indicate how to automatically break output into
convenient groups of documents.

• Use the AFPindex tag group to indicate Tag Logical Elements (TLEs) before each document
for indexing full AFPDS data.

Control File Tags

Enrichment contains the following major tag groups. There may be sub-tag groups within the major
tag groups for use in the control file. For more information, see the Enrichment Language Reference
Guide.

Defines a print stream to process and the parameters used to process it.Input Tag Group

Identifies objects (text, graphics, forms, or barcodes) to print on outputs.Add Tag Group

Identifies one or more inputs to sort or match by fields.Sortmatch Tag Group

Defines the CASS Certified™ program and parameters for cleansing
addresses specified using the Address tag group. This tag group is also
used for adding delivery point barcodes.

CASS Tag Group

Identifies a file that contains one or more pages to insert into a document
where a specified variable name exists.

Insertpage Tag Group

Identifies a file that contains one or more records to insert into a document
where a specified variable name or field exists.

Insertrec Tag Group

Defines a file that contains conditions used by Enrichment in rule-based
(that is, conditional) document assembly.

Rule Tag Group

76EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

Defines one or more print streams for Enrichment to create.Output Tag Group

Tunes Enrichment processing performance and sets environmental
parameters.

Environment Tag
Group

Identifies one or more pages to use as a banner.Banner Tag Group

Identifies an alternate content source for the LOOKUP function.Table Tag Group

Sharing Code Between Applications

As you develop Enrichment applications, you may find that specific tag groups in your control files
contain the same information from one application to the next. In this case you can use the <GETFILE>
statement to call files that contain the repeated information.

The following diagrams illustrate how you can use <GETFILE> to share code that defines a field
and adds a 3of9 barcode.

For more information, see the Enrichment Language Reference Guide.

Securing a Control File

You can convert a control file to an unreadable format for security purposes by compiling the control
file. You can decompile a control file at any time to convert it back to a readable format. Any rule file
that is contained in-line in the control file is also compiled and decompiled. Compiling a control file

77EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

only changes the format of the data in the control file so that it cannot be read. It does not change
the content of the control file or the way Enrichment operates.

To compile a control file, specify the run-time arguments explained in the table below in the Enrichment
JCL.

Table 6: Run-Time Arguments for Compiling and Securing a Control File

DescriptionArgument

Specifies the name of the file or DD in which the compiled or decompiled control file is stored.
The default compile DD is DD:COMPCNTL. The default decompile DD is DD:DECNTL.

F=filename

Specifies a key used to compile or decompile control files. The key can be up to 10 characters
and is used to lock or unlock the control file. Any rule included within the control file with the
Content tag group is also compiled or decompiled using the key.

K=key

The first time a control file is processed using a specific key, it is compiled. The next time it is run
using the same key, it is decompiled. Enrichment can run from the original, compiled, or decompiled
control file even if you do not specify a key.

Sample Compile JCL
The following is sample JCL for compiling a control file.

//JOBCARD
//JOBLIB, DD DSN=STREAM.WEAVER.LOAD,DISP=SHR
// DD DSN=SYS3.CRUNTIME.LOAD,DISP=SHR
//*--
//* The first time you run an Enrichment job with the K
//* parameter, it places a compiled version of the control file
//* in the COMPCNTL DD.
//*--
//COMPILE EXEC PGM=PDRSW000,PARM='//K=COMPIT',REGION=0M
//REPORT DD SYSOUT=*
//CONTROL DD DSN=STREAM.WEAVER.CONTROL(UNCOMPED),DISP=SHR
//COMPCNTL DD DSN=STREAM.WEAVER.COMPCNTL(COMPILED),DISP=SHR
//INPUT1 DD DSN=STREAM.WEAVER.INPUT,DISP=SHR
//OUTPUT1 DD DSN=STREAM.WEAVER.OUTPUT1,DISP=SHR
//*--

Sample Decompile JCL
The following is a sample JCL for decompiling a control file.

//JOBCARD
//JOBLIB DD DSN=STREAM.WEAVER.LOAD,DISP=SHR

78EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

// DD DSN=SYS3.CRUNTIME.LOAD,DISP=SHR
//*--
//* The first time you run an Enrichment job with the K
//* parameter, it places a compiled version of the control file
//* in the COMPCNTL DD.
//*--
//COMPILE EXEC PGM=PDRSW000,PARM='//K=COMPIT',REGION=0M
//REPORT DD SYSOUT=*
//COMPCNTL DD DSN=STREAM.WEAVER.CONTROL(UNCOMPED),DISP=SHR
//CONTROL DD DSN=STREAM.WEAVER.COMPCNTL(COMPILED),DISP=SHR
//INPUT1 DD DSN=STREAM.WEAVER.INPUT,DISP=SHR
//OUTPUT1 DD DSN=STREAM.WEAVER.OUTPUT1,DISP=SHR
//*--

Sample JCL for Running Compile or Decompile
The following is a sample JCL for running Enrichment with a compiled control file.

//JOBCARD
//JOBLIB DD DSN=STREAM.WEAVER.LOAD,DISP=SHR
// DD DSN=SYS3.CRUNTIME.LOAD,DISP=SHR
//*--
//* Allow users access to the compiled control file and they
//* can run Enrichment normally (without a key) using the
//* compiled control file in their CONTROL DD.
//*--
//RUNIT EXEC PGM=PDRSW000,REGION=0M
//REPORT DD SYSOUT=*
//CONTROL DD DSN=STREAM.WEAVER.COMPCNTL(COMPILED),DISP=SHR
//INPUT1 DD DSN=STREAM.WEAVER.INPUT,DISP=SHR
//OUTPUT1 DD DSN=STREAM.WEAVER.OUTPUT1,DISP=SHR
//* ---

Example Control File

The following example of a simple control file contains one input, one output, and processing
instructions to sort and add a 3of9 barcode.

The example shows tag groups that describe specific objects (such as inputs) or processes. Within
the tag group are tags that are used to more fully define the object. Parameters may be required to
fully define each tag.

Note: When a tag includes multiple parameters, you must separate each parameter value
from the next with one or more spaces. Furthermore, you must place parameters in the proper
syntax order.

79EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

In the example, the <INPUT> tag begins a tag group (the </INPUT> tag ends the group). The
<NAME> tag describes the Input tag group, and Statements is the value of the <NAME> tag
parameter. This is the name that is used to refer to this input in other areas of the control file.

While it may be easier to read a control file in which each tag occupies its own line (as shown in the
example), you can also enter the data without the line breaks, as shown below.

<input><name>MONTHLY<file>DD:SYSIN<type>AFPDS</input>

Developing a Rule File

A rule file defines conditional processing. It is an optional set of code that offers additional control
and user processing for individual documents and pages. In the rule file you can change field values
based on certain conditions, perform calculations, create and use variables, route documents to
outputs, read and write files, and add inserts or banner pages. The rule file is compiled as part of
control file processing.

While the rule file can be a separate file, developers often embed rule file code within the control file.
When it is embedded in this manner, there is no separate file that contains the rule file code.
Nevertheless, rule file code that is located in the control file is still referred to as the rule file.

80EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

Creating a Rule File

To create a rule file, follow this general process. For more information about any of the steps, see
the Enrichment Language Reference Guide.

1. Decide whether you want to embed the rule file in the control file or whether you want to create
a separate rule file that you call from the control file. Most often developers choose to embed
the rule file in the control file.

2. Add the Rule tag group to the control file.
3. Do one of the following:

• If you are embedding the rule file in the control file, add the Content tag group to the Rule tag
group. The Content tag group will contain the rule file you write.

An example of the Content tag group is shown below.

<rule>
<content>
rule file statements
</content>
</rule>

• If you are calling an external rule file, add the <FILE> tag to the Rule tag group and specify
the path to the external rule file.

<rule>
<file>c:\rules\myRuleFile.txt
</rule>

4. In the rule file (either the external or embedded rule file) create the sections required for your
application. Your rule file can contain some or all of the sections listed below. Each section
executes at a different time during Enrichment processing. The sections consist of a section
header (the section name followed by a colon) and one or more statements. A section header
is the section name followed by a colon.

For example:

DOCUMENT:
%%SUM = %%A + %%B

Note: If you do not designate a section name, Enrichment assumes the section is
DOCUMENT:.

Your rule file can contain some or all of the following sections.

81EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

Executes before any of the inputs are read. Use this section to initialize
variables and add beginning banner pages. You should also declare

START

user-written functions and set the initial file name for dynamically
allocated outputs in this section.

Executes once for each document as soon as the document has been
identified and optionally matched with other inputs. You can use this

DOCUMENT

section to route the document to one or more outputs, append inserts,
and add banner pages.

When inputs are sorted using <SORTMATCH> or <DOUBLESORT>,
documents are processed in the sort order, not in the order in which
they appear in the original input.

This section was the rule file in versions of Enrichment prior to 4.x.

Executes once for each document after postal Presort has occurred.
You can add banner pages and reroute the document to a different

PRESORTED

output (for example, to outsort residual mail pieces). This section only
executes on documents routed to an output containing the Presort group.

The PRESORTED section processes every document for which a record
is returned from the external program called by the <PRESORT> <STEP>
tags. Documents that are not returned by the external program are
instead routed to a reject file if the tag <REJECTFILE> is specified in
the Presort tag group. If the tag <REJECTFILE> is not specified,
documents that are not returned may be "lost," meaning that they will
not appear in any Enrichment output.

Executes once for each page in a document immediately prior to writing
the page to the output. You can use this section to apply page-varying
information, such as checksum for an inserter barcode.

This section was the pagerule in versions of Enrichment prior to 4.X.

PAGE

Executes once after the last document is processed. You can compute
summary information and add banner pages to any or all outputs.

FINISH

5. In each section you create, write the appropriate code to accomplish what you want with your
application. The code that you write may incorporate the following items.

These let you change fields, insert page file assignments, and insert
record file assignments with Set Statements and functions.

User-Defined
Variables

You can use existing subroutines within rule files as functions or write
your own. These subroutines can be written in COBOL, Assembler, or

User-Written
Functions

C. For more information, seeWorking with User-Written Functions
on page 88.

82EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

There are a rich set of functions for you to use in rule files. You can use
these functions to manipulate data and in some cases, return the result
as a variable value.

Functions

These allow you to perform conditional processing. Instructions include
IF THEN ELSE, QUIT, FOR…NEXT, DO…NEXT, and SELECT CASE.

Instructions

These let you manipulate your documents from within the rule file. Print
stream commands include <OUTPUT>, <APPEND>, <BANNER>, and
<FILEBREAK>.

Print Stream
Commands

These annotate the rule file and can be placed anywhere within it.Comments

User-Defined Variables

You can assign variables in the rule file or at the command line using the U switch. For more
information about assigning variables at the command line, see Running an Application on page
200.

Variable assignments have the following form:

%%variable = expression

The simplest expression is just to reference another variable. For example:

%%barcode2 = %%barcode1

Enrichment supports a large variety of more complicated expressions. These fall into three groups:
string expressions, numeric expressions, and logical expressions.

Note: Numeric values in Enrichment cannot be more than 9 digits long. If you need to handle
longer numbers, you can use the SUBSTR function to break up the number into smaller
workable parts.

String Expressions
String expressions result in the creation of a character string. String expressions include:

• String constants. If a string constant contains any spaces or symbols, it must be delimited by single
or double quotes. String constants can also be ASCII, EBCDIC, or hexadecimal.

• Two or more expressions combined with the concatenation operator "|". For example:

%%x = %%y | %%z | string

• A string function. For example:

%%x = SUBSTR(%%y, 2, 10)

83EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

Numeric Expressions
Numeric expressions result in an integer value. Numeric expressions include:

• Numeric constants. These can also be in binary form. For example:

%%x = 23

%%x = b'00101101'

• Numeric expressions combined with arithmetic operators. Most of these operators take two operands,
such as %%y + %%x. However, the unary minus operator has only one operand. For example:

%%x = -%%y

• A numeric function. For example:

%%x = LENGTH(%%y)

Note: Numeric values in Enrichment cannot be more than 9 digits long. If you need to handle
longer numbers you can use the SUBSTR function to break up the number into smaller parts
that you can then work with.

Arrays
An array is an indexed list of values. For example, if you have an array named %%myArray with
values 23, 12, and 65, you could reference these values as follows:

%%myArray[0] would return 23
%%myArray[1] would return 12
%%myArray[2] would return 65

This array has a size of three meaning that there are three values in the array. The size of an array
is specified when it is declared which is accomplished through the DECLARE function. For more
information on this function, see the Enrichment Language Reference Guide.

When you use an array in an assignment, certain rules apply:

• If you use an array on the left side of an assignment, you will set the value of all elements of the
array. For example:

%%myArray = 33

will set all elements of the array to 33.

However, the following:

%%myArray[2] = 33

will set the 3rd element of the array to 33.

84EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

• You cannot use an array on the right side of an assignment unless you use the DECLARE or
ARRAYSIZE functions. For example, the following statements are valid:

%%someValue = DECLARE(%%myarray, 'A', 3)

%%anotherValue = ARRAYSIZE(%%myArray)

Logical Expressions
Logical expressions result in the value TRUE or FALSE. These are represented as integers where
0 is FALSE and anything else (usually 1) is TRUE. Logical expressions are normally used within IF
THEN ELSE instructions and DO loops. They include:

• Expressions combined with the comparison operators. For example:

%%x = %%y > %%z

(%%x will be 1 (TRUE) if %%y is greater than %%z.)

%%x = %%y = %%z

(%%x will be 1 (TRUE) if %%y equals %%z)

• Expressions combined with the logical connectors. The AND and OR connectors combine two
expressions, while the NOT connector negates the single expression following it. For example:

%%x = %%y AND %%z

(%%x will be 1 (TRUE) if both %%y and %%z are TRUE (not 0)).

• A logical function. For example:

%%x = CHANGED(%%y)

(%%x will be either 1 (TRUE) or 0 (FALSE)).

Enrichment automatically converts string expressions to numeric expressions and vice versa.
Therefore, you can use any field variable as a number or use numeric calculations as strings.

Assigning Statements

You can use rules to assign values to variables through:

• Concatenation
• Math operations
• Function calls

85EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

Concatenation
You can use a concatenation character (|) as follows to combine two or more strings or variables
into a single variable (%%varname):

%%varname = value1 | value2 | value3 |…

For example, if the value of %%invoice is $21.00, then

%%MSG = 'Total amount due: ' | %%invoice | '.'

would result in %%MSG being equal to "Total amount due: $21.00".

Note: On mainframe systems you can use either a solid vertical bar (|, EBCDIC X’4F’)
or a broken vertical bar (¦, EBCDIC X’6A’) as a concatenation character. On UNIX systems,
the vertical bar is sometimes displayed solid, sometimes broken, but is always ASCII X’7C’.

Math Operations
The table below lists and describes valid Enrichment math operators. Math operations are processed
before concatenation. Enrichment evaluates these expressions from left to right according to the
indicated operator precedence. If a mathematical expression contains parentheses, Enrichment
evaluates expressions within the parentheses first.

Table 7: Enrichment Math Operators

PrecedenceDescriptionOperator

3Addition+

3Subtraction-

2Multiplication*

2Integer Division—returns the integer result when one value is divided by another

Note: When using integer division of variables in a rule file, at least one
space must separate the%math operator from the variables. For example,
%%var1%%%var2 is incorrect, but %%var1 %%%var2 (with space after
%%var1) is correct.

%

2Remainder—returns only the remainder when one value is divided by another#

1Open and close parentheses(and)

86EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

You can nest parentheses as deeply as necessary, as long as every open parenthesis has a
complementary closing parenthesis. The table below shows how the results of Enrichment math
expressions can differ based on the evaluation order.

Table 8: Example of Evaluation Order

ResultExpression

68(2 + 5) * 10 - 4 % 2

50(2 + 5 * 10) - 4 % 2

502 + 5 * 10 - 4 % 2

422 + 5 * (10 - 4 % 2)

252 + (5 * 10 - 4) % 2

21(2 + 5) * (10 - 4) % 2

172 + (5 * (10 - 4)) % 2

16(2 + (5 * (10 - 4))) % 2

Function Calls
Enrichment includes a wide range of functions that you can use in the rule file for string manipulation,
conversion, formatting, and file I/O.

Note: You can also write your own functions. For more information, seeWorking with
User-Written Functions on page 88.

Setting a Counter

Setting a counter is a simple two-part process accomplished in the rules:

1. Initialize a variable

In the START: section of the rules, name a variable to be used as the counter and set it to 0 as
follows:

%%Total_Subscribers = 0

87EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

2. Increment the variable

In the DOCUMENT: or PAGE: section of the rules, set the counter as follows:

%%Total_Subscribers = %%Total_Subscribers + 1

The following figure shows a counter that is set whenever the subscriber name changes.

START:
%%Total_Subscribers = 0

DOCUMENT:
IF CHANGED(%%Subscriber_Name) THEN

%%Total_Subscribers = %%Total_Subscribers + 1
ENDIF

Example Rule File

The example below shows a rule file that divides outputs based on the value of one variable and
changes the appearance and contents of the outputs based on the value of another variable.

Working with User-Written Functions

In addition to the functions built into Enrichment, you can write or use existing subroutines within rule
files as functions. These functions can be written in COBOL, Assembler, or C. You identify the

88EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

user-written subroutine for use within the rule file by adding the USERFUNCTION declaration in that
file. Once you define a function, you can use it in the samemanner as any other Enrichment function.

The following diagram illustrates how the interface for the user-written function works.

The rules shown below define a user-written function called ims_database—COBOL load module
FNIMS2—that uses an account number to look up a client’s age in an IMS database. Either field
%%Account or %%Account2 can contain the customer account. FNIMS2 is a normal user-written
function subroutine with an input string of up to 25 bytes that returns an output string (%%Age) of up
to 3 bytes. The Input call area (maxin) is 65 bytes (25+40) and the Output call area (maxout) is 43
bytes (3+40).

USERFUNCTION ims_database FNIMS2 COBOL N 65 43
IF %%Account <> ' ' THEN

%%Age = ims_database(%%Account)
ELSE

%%Age = ims_database(%%Account2)
ENDIF

The USERFUNCTION keyword identifies the function within the rule file. Once identified, Enrichment
can access the function using the same syntax as with built-in functions, with one exception: you
can pass only one variable to and from the user-written function.

To pass or receive more than one variable, concatenate multiple arguments into one and use the
built-in RGET or SUBSTR functions to split data into multiple variables for the function's return value.

Using User-Written Functions

To use a user-written function, follow these steps.

1. Write the function. SeeWriting a User-Written Function on page 90.

89EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

2. Compile and link the function. See Compiling and Linking User-Written Functions on page
97.

3. Declare the function. See Declaring User-Written Functions on page 102.
4. Call the function where needed. See Calling User-Written Functions on page 103.

Writing a User-Written Function

The language you choose to create a function depends on the platform on which you are running
Enrichment.

COBOL, Assembler, C

If you are running one of the Enrichment load modules compiled for IBM (Language
Environment or C/370), we recommend putting the run time library and COBOL in the

Mainframe

link pack area (LPA) to improve performance. This is especially critical if you will be
using a COBOL function with Enrichment. This move will increase processing speed
because mainframe systems switch modes and reload faster when reading from
memory than from disk.

CUNIX

Any language that creates DLLs and uses CDECL linkage.Windows

Note: Visual Basic 6.0 and earlier creates DLLs only with STDCALL linkage. These DLLs
will not work with Enrichment.

When naming user-written functions, keep in mind that user-written functions cannot have the same
names as Enrichment built-in functions.

Example COBOL User-Written Function
The following illustrates a COBOL user-written function.

/* -- */
/* Rule File that calls COBOL user-written function */
/* -- */
/* Cobol Function to reverse Characters */
/* -- */
UserFunction REV_COB NORMCOB
/* Invoke User Functions */
%%Rev_Name_Cob_Normal = REV_COB(%%Whole_Name)

The name REV_COB refers to the COBOL function NORMCOB as defined in the USERFUNCTION
command. NORMCOB (shown below) is a user-written function that reverses an input string. It is a
compiled function that is linked into Enrichment and called within the rule file. If NORMCOB required
two variables from the print stream instead of one as in the example, an extra step would be necessary

90EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

to concatenate the two variables together and pass them as one variable to the function. The
separation of the values occurs within the user function. If NORMCOB returned two or more variables,
all values would have to be concatenated before the return. The built-in functions SUBSTR or RGET
can separate the return values into variables.

* File: NORMCOB *
* System: Enrichment *
* Version: 6.6.2 *
* Language: COBOL (mainframe only) *
* Copyright (c)1993-2013 Precisely *

* Purpose: Sample COBOL User-Written Function for "Normal" *
* type Enrichment User-Written Function interface. *
* This example reverses the input string. *

IDENTIFICATION DIVISION.
PROGRAM-ID. NORMCOB.
*

ENVIRONMENT DIVISION. *

DATA DIVISION.
*--
WORKING-STORAGE SECTION.
01 IDX PIC 999 COMP.
01 IDX2 PIC 999 COMP.
*

* LINKAGE SECTION *

* Declarations for Input/Output call areas to pass data *
* between the Rule file and this function. *

LINKAGE SECTION.
*--- Input Call Area --
01 INPUT-CALL-AREA.
* --- Required fields:

05 IN-SIGNATURE PIC X(4).
05 CALL-TYPE PIC X(1).
05 CALL-FROM PIC X(1).
05 FILLER PIC X(2).
05 IN-RC PIC S9(9) COMP.
05 IN-RV PIC S9(9) COMP.
05 FILLER PIC X(20).
05 IN-SIZE PIC S9(9) COMP.

* --- User defined PIC X fields from Rule file arguments:
05 IN-DATA PIC X(40).*

*--- Output Call Area ---
01 OUTPUT-CALL-AREA.
* --- Required fields:

05 OUT-SIGNATURE PIC X(4).

91EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

05 OUT-RC PIC S9(9) COMP.
05 OUT-RV PIC S9(9) COMP.
05 FILLER PIC X(24).
05 OUT-SIZE PIC S9(9) COMP.

* --- User defined PIC X fields for combined results:
05 OUT-DATA PIC X(40).

*

PROCEDURE DIVISION USING INPUT-CALL-AREA OUTPUT-CALL-AREA.
*
FUNCTION-START.
*
* --- Check Input and Output signatures ---------------------

IF IN-SIGNATURE NOT EQUAL 'PDRI' THEN
MOVE -3 TO OUT-RC
GO TO FUNCTION-END

END-IF.
IF OUT-SIGNATURE NOT EQUAL 'PDRO' THEN

MOVE -3 TO OUT-RC
GO TO FUNCTION-END

END-IF.
*
* --- Perform User function HERE: ---------------------------
* -- Print some stuff
* -- Reverse string

INITIALIZE OUT-DATA, IDX2.
PERFORM VARYING IDX FROM IN-SIZE BY -1

UNTIL IDX EQUAL 0
ADD 1 TO IDX2
MOVE IN-DATA (IDX:1) TO OUT-DATA (IDX2:1)

END-PERFORM.
*
* --- Store return value, size and set return code & value --

MOVE IN-SIZE TO OUT-SIZE.
MOVE 0 TO OUT-RC.
MOVE 0 TO OUT-RV.

*
FUNCTION-END.
EXIT.
*** End of NORMCOB COBOL II File ***************************

Example C User-Written Function
The following illustrates a C user-written function that reverses an input string. The example below
is for a User Function to be run on a UNIX system.

/***/
/* File : normc.c */
/* System : Enrichment */
/* Version: 6.6.2 */
/* Copyright (c)1993-2013 Precisely */

92EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

/* all rights reserved. Unauthorized use or duplication prohibited. */
/*---*/
/* Purpose: */
/*---*/
/* History: */
/* static char SccsID[] = @(#)normc.c 1.1 08/18/97 */
/* 07/09/98 rolson Initial 50 */
/* 08/18/97 tcampbel Userfunction for testcases */
/* --- */
/*
* normc.c - Example Normal C User Function
* Reverse characters.
*/
/* --- */
#include <stdio.h>

/* --- UFAPI Input Call Area ---------- */
typedef struct {

char pSig[4]; /* Signature 'PDRI' */

char cCallType; /* Type - Init, Norm, or Term */

char cCallFrom; /* Called from - R/P rule/pagerule */

char pSave1[2]; /* (future) */

int iInRC; /* Initial RC */

int iInRV; /* Initial RV */

char pSave2[20]; /* (future) */

int iInSize; /* Size of Input data */

char pInData[2]; /* Input data (blank padded) */
} UFIN, *PUFIN;

/* --- UFAPI Output Call Area --------- */
typedef struct {

char pSig[4]; /* Signature 'PDRO' */

int iOutRC; /* Return RC */

int iOutRV; /* Return RV */

char pSave1[24]; /* (future) */

int iOutSize; /* Size of Output data */

char pOutData[2]; /* Output data (blank padded) */
} UFOUT, *PUFOUT;

/* -- User Function subroutine to be called -- */
long int normc(PUFIN pUFIN, PUFOUT pUFOUT) {

93EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

long int i;
/* Error exit if signatures not found */

if (memcmp(pUFIN->pSig, "PDRI",4)) return(3);
if (memcmp(pUFOUT->pSig,"PDRO",4)) return(3);

pUFOUT->iOutRC = pUFOUT->iOutRV = 0;, /* Clear -99s from RC & RV */
for (pUFOUT->iOutSize=0,i=pUFIN->iInSize-1;

pUFOUT->iOutSize<pUFIN->iInSize;
pUFOUT->iOutSize++) {

pUFOUT->pOutData[pUFOUT->iOutSize] = pUFIN->pInData[i--];
}
return (0); /* RC=0 -> all ok */

} /* NORMC */

Call Areas in User-Written Functions

Enrichment communicates with the user-written function through data buffers called “call areas”.
Programmers do not have to be concerned with these. However, the programmer who writes the
user-written function does need to understand the call areas.

When Enrichment executes the function it passes it two memory buffers called the “input call area”
and the “output call area”. Enrichment formats these call areas with specific data to ensure validity
and appends them with a data area for the input argument (input area) and return string (output
area).

Note: The COBOL code in Example COBOL User-Written Function on page 90 illustrates
these areas and defines their content.

Input Call Area
The Input Call area is a memory block used to pass the %%IN_VAR data from Enrichment to the
user-written function. (For more information about %%IN_VAR, refer to Calling User-Written
Functions on page 103.) The size of this memory block is set with the maxin parameter of the
USERFUNCTION declaration. (For more information about USERFUNCTION, refer to Declaring
User-Written Functions on page 102.)

The layout of the Input Call area is described in the following table:

94EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

Table 9: Layout of Input Call Area

DescriptionOffsetSizeTypeName

Input signature, set to "PDRI" by Enrichment04CHARInSig

Call Type. This will be one of the following:

• I Initialization Call
• N Normal Call
• T Termination Call

41CHARCallType

Section of the rule file from which it is called:

• S START
• D DOCUMENT
• E PRESORTED
• P PAGE
• F FINISH

51CHARCallFrom

Reserved62CHARfuture

Current Return Code (from the previous function)84INTRC

Current Return Value (from the previous function)124INTRV

Reserved1620CHARfuture

Size of the input data (less than or equal to maxin;
if less than maxin, Enrichment pads InData with
blanks)

364INTInSize

Input data. The user-written function can define
multiple fields within this data for ease of processing.
The rule file can then prepare one long string with
multiple values using concatenation or the RPUT
function.

40nCHARInData

Hints

• Enrichment sets the Input Call Area and the user-written function should not modify it.
• The Input signature should be created by the user function to ensure that the proper block of
memory has been passed to it.

• For extended user-written functions, the initialization and termination calls (call types I and T) do
not set InSize or InData and do not use OutSize or OutData. If the user-written function returns

95EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

anything other than a 0 in the Output Call Area RC or RV, Enrichment assumes the
initialization/termination failed. If the RC is between 1 and 7, Enrichment issues a warning. Otherwise,
Enrichment issues a severe error.

• For extended user-written functions, the init and term calls only occur once: init when the program
is loaded (before any rules) and term at the end of processing.

Output Call Area
The Output Call area is a memory block used to pass the result string from the user-written function
back to Enrichment. The size of this memory block is set with the maxout parameter of the
USERFUNCTION declaration. (For more information about USERFUNCTION, refer to Declaring
User-Written Functions on page 102.)

The layout of the Output Call area is described in the following table.

Table 10: Layout of Output Call Area

DescriptionOffsetSizeTypeName

Output signature, set to “PDRO” by Enrichment04CHAROutSig

Result Return Code (initially set to -99)44INTRC

Result Return Value (initially set to -99)84INTRV

Reserved1224CHARfuture

Size of output data (initially set to 0; must be set less than or
equal to maxout)

364INTOutSize

Output data (initially blanked for maxout characters). The
user-written function can define multiple fields within this data
for ease in processing. The rule file could then retrieve these
multiple values using the SUBSTR or RGET functions.

40nCHAROutData

Hints

• Enrichment sets OutSig in the Output Call Area to be checked (not changed) by the user-written
function.

• Enrichment initializes RC and RV in the Output Call Area to -99. The user-written function should
set them to 0 or another valid return code if successful. If RC or RV is still -99 after the user-written
function is called, Enrichment assumes that the function did not run and issues a severe error.

• On mainframe, Enrichment checks Register 15 (R15) after the call to the user-written function. R15
should always be 0 if the user-written function ran, even if there was a problem. Use RC and RV

96EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

in the Output Call Area for normal return codes. If R15 is non-zero, Enrichment issues a severe
error.

• For extended user-written functions, the initialization and termination calls (call types I and T) do
not set InSize or InData and do not use OutSize or OutData. If the user-written function returns
anything other than a 0 in the Output Call Area RC or RV, Enrichment assumes the
initialization/termination failed. If the RC is between 1 and 7, Enrichment issues a warning. Otherwise,
Enrichment issues a severe error.

• For multiple calls to the same user-written function (that is, functions referenced multiple places
within the rule file), the initialization/termination only occurs once. All calls must specify the same
language, type, maxin, and maxout values.

Compiling and Linking User-Written Functions

You must compile and link the user-written functions before you can use them in Enrichment
processing.

Compiling and Linking on UNIX
Enrichment for UNIX can only process functions written in C. You must compile and link to create a
shared object where the entry point name is the same as the file name.

AIX

For UNIX systems running AIX, youmust place the user-written function name in name.c and compile
and link the function using the following command:

cc name.c -o functionName -e functionName -H512 -T512

On 64-bit:

cc name.c -o functionName -e functionName -H512 -T512 -q64

where functionName is the name of the function

You must place the name executable in a directory listed in the LIBPATH environment variable.
Typically, this will be .../Enrichment/bin.

Sun Solaris

For systems running Sun Solaris, you must place the user-written function name in name.c and
compile and link the function using the following command:

cc name.c -o functionName -G -L.../Enrichment/bin

where functionName is the name of the function

97EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

You must place the name executable in a directory listed in the LD_LIBRARY_PATH environment
variable. Typically, this will be .../Enrichment/bin.

On Sun Solaris you must specify an environment variable for LD_LIBRARY_PATH in order for the
user function to be called properly.

HP-UX

For systems running HP-UX, you must place the user-written function name in name.c and compile
and link the function using the following commands:

cc -Ae -c +z name.c

On 64-bit:

cc -Ae -c +z +DD64 name.c

ld -b +s -o functionName name.o

where functionName is the name of the function.

You must place the name executable in a directory listed in the SWVR_LIB environment variable.
Typically, this will be .../Enrichment/bin.

Compiling and Linking on Linux
Enrichment on Linux can only process functions written in C. To use a user function you must create
a shared object where the entry point name is the same as the file name, and place the shared object
in a directory listed in the LD_LIBRARY_PATH environment variable. Keep in mind that Linux is case
sensitive.

For example, if the function in the C source is spelled "normc", the control file must use "normc”, not
“NORMC” or “NorMc”.

The following example command creates a shared object with the same name as the function:

$ gcc -shared name.c -o functionName

If you run Enrichment on a 64-bit Red Hat Enterprise Linux platform, the user function must be
compiled and linked differently. This example shows the command line syntax:

$ gcc -shared name.c -o functionName -fPID -m32

On 64-bit:

$ gcc -shared name.c -o functionName -fPID -m64

Compiling and Linking on Windows
Enrichment for Windows supports functions written in any language that creates Windows DLLs.

98EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

Compiling and Linking on Mainframe
This section contains sample JCL for compiling and linking functions written in COBOL, Assembler,
and C. You can also find the sample JCL files in the Enrichment installation.

The following contains the sample JCL necessary to compile and link a COBOL user-written function.

//*jobcard
//**
//**UFUNCCOB: Compile and link-edit a COBOL user function
//**
//**Customization instructions:
//** 1. Add a jobcard.
//** 2. Change NORMCOB to the member name of your user function.
//** 3. Change source_pds to the dataset name of the source code.
//** 4. Change loadmod_pds to the dataset name of the load module.
//**
//COB2UCL PROC MEM=''
//* PROC FOR COBOL COMPILE, LINK
//COB2, EXEC PGM=IGYCRCTL,PARM='RES,RENT',REGION=1400K
//SYSPRINT DD SYSOUT=A
//SYSLIN, DD DSNAME=&&LOADSET,UNIT=SYSDA,DISP=(MOD,PASS),
// SPACE=(TRK,(3,3)),DCB=(BLKSIZE=80,LRECL=80,RECFM=FB)
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT4 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT5 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT6 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT7 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSIN DD DISP=SHR,DSNAME=source_pds(&MEM)
//LKED, EXEC PGM=IEWL,PARM='RENT,LIST,XREF,LET,MAP',COND=(5,LT,COB2),
// REGION=512K
//SYSLIN DD DISP=(OLD,DELETE),DSNAME=&&LOADSET
// DD DDNAME=SYSIN
//SYSLMOD DD DSNAME=loadmod_pds(&MEM),
// DISP=SHR,DCB=(BLKSIZE=3072)
//SYSLIB DD DISP=SHR,DSN=CEE.SCEELKED
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSPRINT DD SYSOUT=A
// PEND END OF COB2UCL PROC
//*
//STEP1 EXEC COB2UCL,MEM='NORMCOB'

The following contains the sample JCL necessary to compile and link an Assembler user-written
function.

//*jobcard
//**UFUNCASM: Compile and link-edit an assembler user function ****
//**
//**Customization instructions:
//** 1. Add a jobcard.

99EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

//** 2. Change XNAUF to the member name of your user function.
//** Note: Enrichment distributes two samples: NORMASM and EXTASM.
//** Source can be found in installhlq.STREAMW.FUNCTION.
//** 3. Change object_pds to the dataset name of an object library.
//** 4. Change source_pds to the dataset name of the source code.
//** 5. Change loadmod_pds to the dataset name of the load library.
//**
//ASM1, EXEC PGM=ASMA90,PARM='NODECK,OBJECT,TERM',
// REGION=6M,COND=(5,LE)//SYSPRINT DD SYSOUT=*
//SYSPUNCH DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//SYSIN DD DISP=SHR,DSN=source_pds.ASM(XNAUF)
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
//SYSUT1 DD UNIT=VIO,SPACE=(CYL,(10,5)),DSN=&SYSUT1
//SYSLIN DD DISP=OLD,DSN=object_pds(XNAUF)
//*
//LINK1 EXEC PGM=HEWLKED,REGION=512K,COND=(5,LE),
// PARM=('LET,XREF,LIST,MAP,NORENT,REUS,AMODE=24,RMODE=24')
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DISP=OLD,DSN=object_pds(XNAUF)
//OBJECT DD DISP=OLD,DSN=object_pds
//SYSLIB DD DISP=SHR,DSN=loadmod_pds
//SYSLMOD DD DSN=loadmod_pds(XNAUF),
// DISP=SHR,DCB=(BLKSIZE=3072)
//SYSUT1 DD DISP=NEW,UNIT=SYSDA,SPACE=(CYL,(2,2))
//*

The following contains the sample JCL necessary to compile and link a C user-written function.

//*jobcard
//**
//**UFUNCC: Compile and link-edit a C user function.
//**Customization instructions:
//** 1. Add a jobcard.
//** 2. Change the STEPLIB to include the dataset name of your
//** C runtime library, if necessary.
//** 3. Change NORMC to the member name of your user function.
//** 4. Change object_pds to the name of an object library dataset.
//** 5. Change source_pds to the name of a source code dataset.
//** 6. Change loadmod_pds to the name of a load library dataset.
//**
//COMPILE EXEC PGM=CCNDRVR,REGION=96M,
// PARM='OPTFILE(DD:CCOPT)'
//STEPLIB DD DISP=SHR,DSN=CEE.SCEERUN
// DD DISP=SHR,DSN=CBC.SCCNCMP
//SYSMSGS DD DUMMY,DSN=CBC.SCBC3MSG(EDCMSGE),DISP=SHR
//SYSXMSGS DD DUMMY,DSN=CBC.SCBC3MSG(CBCMSGE),DISP=SHR
//SYSIN DD DSN=source_pds(NORMC),DISP=SHR
//SYSLIN DD DSN=object_pds(NORMC),DISP=OLD
//SYSUT10 DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSCPRT DD SYSOUT=*

100EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

//CCOPT DD *
SEARCH(//'CEE.SCEEH.+',//'CBC.SCLBH.+')
LIST
SOURCE
NOLONG
NOMAR
NOSEQ
NOOE
TARGET(LE)

//SYSUT1 DD UNIT=VIO,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSUT4 DD UNIT=VIO,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSUT5 DD UNIT=VIO,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT6 DD UNIT=VIO,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT7 DD UNIT=VIO,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT8 DD DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT9 DD UNIT=VIO,SPACE=(32000,(30,30)),
// DCB=(RECFM=VB,LRECL=137,BLKSIZE=882)
//SYSUT10 DD SYSOUT=*
//SYSUT14 DD UNIT=VIO,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT15 DD SYSOUT=*
//*
//*---
//* PRE-LINKEDIT STEP:
//*---
//PLKED EXEC PGM=EDCPRLK,PARM='MAP,NOER',COND=(4,LT,COMPILE),
// REGION=64M
//STEPLIB DD DSN=CEE.SCEERUN,DISP=SHR
//SYSMSGS DD DSN=CEE.SCEEMSGP(EDCPMSGE),DISP=SHR
//SYSLIB DD DSN=CEE.SCEECPP,DISP=SHR
//SYSIN DD DSN=object_pds(NORMC),DISP=SHR
// DD DSN=CBC.SCLBSID(IOSTREAM),DISP=SHR
// DD DSN=CBC.SCLBSID(COMPLEX),DISP=SHR
// DD DSN=CBC.SCLBSID(ASCCOLL),DISP=SHR
//SYSMOD DD DSN=&&PLKSET,UNIT=VIO,DISP=(NEW,PASS),
// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSIN2 DD DUMMY
//*
//**
//* LINK
//**
//LINK EXEC PGM=IEWL,COND=((4,LT,COMPILE),(4,LT,PLKED)),
// REGION=32M,PARM='AMODE=31,MAP,RENT'
//SYSPRINT DD SYSOUT=*
//OBJECT DD DISP=SHR,DSN=object_pds

101EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

//SYSLIB DD DISP=SHR,DSN=CEE.SCEELKED
//SYSLMOD DD DSN=loadmod_pds(NORMC),
// DISP=SHR,DCB=(BLKSIZE=3072)
//SYSUT1 DD DISP=NEW,UNIT=SYSDA,SPACE=(CYL,(2,2))
//SYSLIN DD *
INCLUDE OBJECT(NORMC)
/*

Declaring User-Written Functions

To declare a user-written function, place the USERFUNCTION declaration in the rule file (usually in
the START section). Once declared, the user-written function is called in the same manner as any
other Enrichment rule function.

The syntax for declaring a user-written function is:

USERFUNCTION name module [language type maxin maxout buffers]

The following table describes the parameters used to declare a user-written function.

DefaultDescriptionParameter

NoneUp to 20 characters that specify a unique name for the function.name

NoneOne of the following:

• For mainframe systems, up to 8 characters that specify the actual subroutine
name link-edited into its own load module of the same name.

• For UNIX, any number of characters that specify the actual subroutine name
linked as a shared object, where the entry point name is the same as the file
name. The file must be in the library path.

• For Windows, the value consists of two parts—DLL:function, where "DLL" is
the name of the DLL you created and "function" is the name of the function
within the DLL. If you specify only one name, it is used for both the DLL and
the function.

module

COne of the following that specifies the language type used in the function’s
subroutine:

[language]

IBM C/370 or SAS/C for mainframe systems or UNIX C for UNIX
systems. Use C forWindows nomatter which language you chose
to create the DLL.

C

IBM Assembler (Mainframe only)ASM

102EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

DefaultDescriptionParameter

IBM VS COBOL II (Mainframe only)COB[OL]

NORMALOne of the following interface types for the user-written function:[type]

One call per entry in the rule file, no initialization or termination
calls. (The call type in the Input Call area is N for all calls.)

N[ORMAL]

Three types of calls:

I — Initialization (once after initial program load)

N — Normal call (one call per entry in the rule file)

T — Termination (once before final remove).

E[XTENDE]

NoneThe maximum size of the input data that will be passed to the function. The Input
Call Area will be this size plus 40 bytes. 256 is the default maxin setting.

[maxin]

NoneThe maximum size of the result returned from the function. The Output Call Area
will be this size plus 40 bytes. 256 is the default maxout setting.

[maxout]

AOne of the following that specifies the type of memory to pass to the function for
the Input and Output Call Areas:

• A Pass memory above the 16MB line to the function.
• B Pass memory below the 16MB line to the function.

This parameter is only available on Mainframe.

[buffers]

Calling User-Written Functions

The syntax for calling a user-written function in a rule file is:

%%Ans = Name(%%IN_VAR)

The following table describes the parameters used to call a user-written function.

DescriptionParameter

A variable whose value results from the call to the user-written function.%%Ans

The user-written function name. This must be identical to the name value in the USERFUNCTION
command used to declare the function.

Name

103EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

DescriptionParameter

The variable or constant string to store in InData in the Input Call Area (that is, the data the
user-written function will use as input).

%%IN_VAR

In the example rule file shown in the figure below, the user-written function ims_database is a
COBOL load module FNIMS2 that uses an account number to look up a client’s age in an IMS
database. Either %%Account or %%Account2 contains the customer account. FNIMS2 is a normal
user-written function subroutine with an input string (%%Account or %%Account2) of maximum
length 25 bytes that returns an output string (%%Age) of up to 3 bytes. The Input Call area is 65 bytes
(40 + 25) in length while the Output Call area is 43 bytes (40 + 3) in length.

USERFUNCTION ims_database FNIMS2 COBOL N 25 3
IF %%Account <> '' THEN

%%Age = ims_database(%%Account)
ELSE

%%Age = ims_database(%%Account2)
ENDIF

Hints

• User-written functions always have one argument,%%IN_VAR, that can be a variable or a constant
string.

• If multiple variables must be passed into the user-written function, you can concatenate them into
one long variable.

• If multiple values must be returned by the user-written function, you can extract them from the
result variable using the SUBSTR or RGET built-in functions.

Sample User-Written Functions

Enrichment is shipped with six sample user-written functions which include three normal functions
and two extended functions. The three normal functions are NORMC, NORMCOB, and NORMASM. The
three extended functions are EXTC, EXTASM and RANDNUM. You can find these functions on the
Enrichment installation media.

Reverses a sequence of characters and is written in C.NORMC

Reverses an input string and is written in COBOL.NORMCOB

Reverses a sequence of characters and is written in Assembler.NORMASM

Reverses a sequence of characters and is written in C. During the Initialization
call, a counter is initialized. In each normal call, the counter is incremented to

EXTC

104EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

calculate the number of times the function is invoked. In the Termination call,
the counter is printed.

Reverses a passed string and is written in Assembler. During the Initialization
call, a counter is initialized. In each normal call, the counter is incremented to

EXTASM

calculate the number of times the function is invoked. In the Termination call,
the counter is printed.

Generates a random number using the system time function. It is designed as
an extended function to ensure any numbers generated are uniquely random.
The function takes a high-range number as an input parameter.

RANDNUM

Utilities

Enrichment provides several utilities on Mainframe and UNIX to help you develop applications.

Note: These utilities are provided for your convenience only and are not supported by
Precisely.

Mainframe Utilities

Enrichment includes several utilities designed to make creating your Enrichment applications easier.

Running Mainframe Utilities
The mainframe utilities consist of load modules and sample JCL. Some utilities also include REXX
execs so that you can run the utilities interactively. The REXX execs, load modules, and sample JCL
shipped with Enrichment are in the following data sets:

• hlq.STREAMW.EXEC
• hlq.STREAMW.LOAD
• hlq.STREAMW.JCL

where hlq is the high-level qualifier in which you installed Enrichment.

Mainframe utilities run in either batch mode or interactive mode, depending upon the utility.

105EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

Running Utilities in Batch Mode

Batch mode indicates that the utility is run using JCL. Batch utilities are generally used as a step in
your production JCL to prepare a print stream for Enrichment processing. PDRCCA2M, PDRCCM2A,
and PDRXCME are generally run in batch mode.

To run a utility in batch mode, customize the job card as well as the STEPLIB and data set names
in the sample JCL shipped with the utility and submit it. Each sample JCL contains comments that
describe what you need to customize.

Running Utilities in Interactive Mode

Interactivemode indicates that the utility is run from TSO. PDRCMETA, PDRLNADD, and PDRLNSUB
are generally run in this mode. Interactive utilities are usually run ad hoc, during the analysis and
setup of an Enrichment project.

To run a utility interactively, change the loadmod variable in the REXX exec shipped with the utility
so that it points to the data set in which Enrichment is installed, and then run the exec. Each REXX
exec contains comments that describe what you need to customize.

Note: The C run-time library must be in your TSO LOADLIB concatenation for you to run any
C programs interactively. Consult your system administrator if you have any problems.

In order for TSO to locate the REXX utilities without your specifying the entire data set name, you
must allocate the SYSEXEC DD to the data set. So, if your Enrichment high-level qualifier (HLQ) is
hlq, the REXX exec data set would be hlq.STREAMW.EXEC. For example, you can invoke the
PDRCMETA exec with the fully qualified name:

hlq.STREAMW.EXEC(PDRCMETA) metacodefile

or you can allocate hlq.STREAMW.EXEC as SYSEXEC and then invoke PDRCMETA directly, as
follows:

ALLOC FI(SYSEXEC) DA('hlq.STREAMW.EXEC') SHR
PDRCMETA metacodefile

In this case, you would not have to reallocate the file for future references during the current TSO/ISPF
session. For example:

PDRCMETA metacodefile2

Note: If you use these utilities often, you may want to put the SYSEXEC allocation into your
TSO log-on CLIST. Ask your system administrator if you do not know how to do this yourself.

PDRCCA2M
PDRCCA2M converts ANSI carriage controls to machine carriage controls.

106EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

Syntax

PDRCCA2M 'indsn outdsn switches'

Table 11: Parameters for PDRCCA2M

DefaultDescriptionParameter

REXX: No Default

JCL: DD:SYSUT1

The input data set name or DD name. Do not use quotation marks. Use
the format DD:DDName for DDs.

In JCL, an asterisk (*) indicates the default DD. In REXX, you must
specify the input data set name.

indsn

REXX: No Default

JCL: DD:SYSUT2

The output data set name or DD name. Do not use quotation marks.
Use the format DD:DDName for DDs.

In JCL, an asterisk (*) indicates the default DD. In REXX, you must
specify the output data set name.

outdsn

/F/EUp to three switches with no intervening spaces. A slash must precede
each switch.

The first switch specifies the record format to which PDRCCA2M will
convert the input, as follows:

• /F— Fixed. Keep output records as they were in the input print stream.
• /V — VBA. Strip blanks from each record in the output print stream.

switches

The second switch specifies how to pad records inserted into the input
print stream, as follows:

• /A — Use the ASCII hexadecimal character x'20' to pad inserted
records.

• /E — Use the EBCDIC hexadecimal character x'40' to pad inserted
records.

The third switch, /T, sets PDRCCA2M to issue trace information for every
1,000 records.

Example

PDRCCA2M 'D966.IN(TEST1) D966.OUT(TEST1) /V/T'

In this example, PDRCCA2M is to convert ANSI carriage controls in D966.IN(TEST1) to machine
carriage controls in D966.OUT(TEST1). PDRCCA2M will convert the record format to VBA (that is,

107EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

it will remove all spaces from the end of each record) and will issue trace information every 1,000
records. The REXX exec automatically browses the output data set so you can verify the results.

JCL

The following shows the JCL shipped with the PDRCCA2M utility.

//*jobcard
//**
//**Customize: 1. Change STEPLIB to point to the datasets where ***
//** the following are installed at your site. ***
//** - Enrichment load module ***
//** - C runtime library ***
//** 2. Change SYSUT1 and SYSUT2 DDs to be the datasets ***
//** for input and output respectively. ***
//**
//** PDRCCA2M ** Convert ANSI to Machine Channel Controls ***
//**
//** PDRCCA2M Parameters: ***
//************** Parm1: Input file name/DD (or * to keep SYSUT1) ***
//************** Parm2: Output file name/DD (or * to keep SYSUT2) ***
//************** Parm3: Options (no space between): ***
//************** /F = Fixed (keep lines same as input) - DEFAULT ***
//************** /V = VBA output (strip blanks from each record) ***
//************** /A = ASCII pad inserted lines (hex 20) ***
//************** /E = EBCDIC pad inserted lines (hex 40)-DEFAULT ***
//************** /T = Trace every 1000 lines ***
//************** Example: PARM='* * /V/A/T' ***
//************** PARM='DD:IN DD:OUT /T' ***
//**
//PDRCCA2M EXEC PGM=PDRCCA2M,PARM='* * /V/T'
//STEPLIB DD DSN=PDR.STREAMW.LOAD,DISP=SHR
// DD DSN=SYS3.CLIB22.SEDCBASE,DISP=SHR
// DD DSN=SYS3.CLIB22.SEDCLINK,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=inputdsn,DISP=SHR
//SYSUT2 DD DSN=outputdsn,DISP=SHR
//*

REXX Code

The following shows the REXX Code shipped with the PDRCCA2M utility.

/* REXX ** Convert ANSI CC to machine CC ****************************/
/* Changes: -Created: 02/01/96 DJK */
/* Customize: Change loadmod below to be where Enrichment is */
/* installed. */
/**/
loadmod = "'PDR.STREAMW.LOAD(PDRCCA2M)'"
address TSO

108EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

arg in out strip .

parse source . . execname .; version = '1.0'
if in = '' | out = '' then do

Call EXPLAIN
say 'Enter parameters in the order explained.'
say 'Do not use quotes around dataset names.'
pull in out strip . if in = '' | out = '' then

call ERROR 8, 'Required parameters indsn and outdsn are missing.'
End

/* Allocate input and output files */

if sysdsn("'"in"'") <> 'OK' then do
say "Input file '"in"' not found:" sysdsn("'"in"'")
exit 4

end
"CALL "loadmod" '''"in"'' ''"out"'' "strip"/T'"
address ISPEXEC "BROWSE DATASET('"out"')"

exit
/***/
/* ERROR - Error exit with message */
/***/
ERROR:

if arg(2) <> '' then say arg(2)
if arg(3) <> '' then say arg(3)
exit arg(1)

/***/
/* EXPLAIN - Self documenting routine */
/***/
EXPLAIN:

say '(c)Precisely'
say ' 'execname' Version' version ' All rights reserved.'
say
say 'Function: Convert ANSI CC to machine CC. '
say
say 'Syntax: %'execname' indsn outdsn strip'
say ' where: indsn is the input dataset (required).'
say ' Do not include quotes.'
say ' outdsn is the output dataseot include quotes.'
say ' strip are any parameters to pass to the '
say ' load module.'
return

PDRCCM2A
PDRCCM2A converts machine carriage controls to ANSI carriage controls.

109EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

Syntax

PDRCCM2A 'indsn outdsn switches'

DefaultDescriptionParameter

REXX: No Default

JCL: DD:SYSUT1

The input data set name or DD name. Do not use quotation marks. Use
the format DD:DDName for DDs. In JCL, an asterisk (*) indicates the
default DD. In REXX, you must specify the input data set name.

indsn

REXX: No Default

JCL: DD:SYSUT2

The output data set name or DD name. Do not use quotation marks. Use
the format DD:DDName for DDs. In JCL, an asterisk (*) indicates the
default DD. In REXX, you must specify the output data set name.

outdsn

/F/EUp to three switches with no intervening spaces. A slash must precede
each switch. The first switch specifies the record format to which
PDRCCM2A will convert the input, as follows:

• /F — Fixed. Keep output records as they were in the input print stream.
• /V — VBA. Strip blanks from each record in the output print stream.

strip

The second switch specifies how to pad records inserted into the input
print stream, as follows:

• /A—Use the ASCII hexadecimal character x'20' to pad inserted records.
• /E — Use the EBCDIC hexadecimal character x'40' to pad inserted
records.

The third switch, /T, sets PDRCCM2A to issue trace information for every
1,000 records.

Example

PDRCCM2A 'D966.IN(TEST1) D966.OUT(TEST1) /V/T'

In this example, PDRCCM2A converts machine carriage controls in D966.IN(TEST1) to ANSI
carriage controls in D966.OUT(TEST1). PDRCCM2A will convert the record format to VBA (that is,
it will remove all spaces from the end of each record) and will issue trace information every 1,000
records. The REXX exec automatically browses the output data set so you can verify the results.

110EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

JCL

The following shows the JCL shipped with the PDRCCM2A utility.

//*jobcard
//***
//**Customize: 1. Change STEPLIB to point to the datasets where ***
//** the following are installed at your site. ***
//** - Enrichment load module ***
//** - C runtime library ***
//** 2. Change SYSUT1 and SYSUT2 DDs to be the datasets ***
//** for input and output respectively. ***
//***
//** PDRCCM2A ** Convert ANSI to Machine Channel Controls ***
//***
//** PDRCCM2A Parameters: ***
//************** Parm1: Input file name/DD (or * to keep SYSUT1) ***
//************** Parm2: Output file name/DD (or * to keep SYSUT2) ***
//************** Parm3: Options (no space between): ***
//************** /F = Fixed (keep lines same as input) - DEFAULT ***
//************** /V = VBA output (strip blanks from each record) ***
//************** /A = ASCII pad inserted lines (hex 20) ***
//************** /E = EBCDIC pad inserted lines (hex 40)-DEFAULT ***
//************** /T = Trace every 1000 lines ***
//************** Example: PARM='* * /V/A/T' ***
//************** PARM='DD:IN DD:OUT /T' ***
//***
//PDRCCM2A EXEC PGM=PDRCCM2A,PARM='* * /V/T'
//STEPLIB DD DSN=PDR.STREAMW.LOAD,DISP=SHR
// DD DSN=SYS3.CLIB22.SEDCBASE,DISP=SHR
// DD DSN=SYS3.CLIB22.SEDCLINK,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=inputdsn,DISP=SHR
//SYSUT2 DD DSN=outputdsn,DISP=SHR
//*

REXX Code

The following shows the REXX Code shipped with the PDRCCM2A utility.

/* REXX ** Convert ANSI CC to machine CC ****************************/
/* Changes: -Created: 02/01/96 DJK */
/* Customize: Change loadmod below to be where Enrichment is */
/* installed. */
/**/
loadmod = "'PDR.STREAMW.LOAD(PDRCCM2A)'"
address TSO
arg in out strip .

parse source . . execname .; version = '1.0'
if in = '' | out = '' then do

111EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

Call EXPLAIN
say 'Enter parameters in the order explained.'
say 'Do not use quotes around dataset names.'
pull in out strip .
if in = '' | out = '' then

call ERROR 8, 'Required parameters indsn and outdsn are missing.'
End

/* Allocate input and output files */

if sysdsn("'"in"'") <> 'OK' then do
say "Input file '"in"' not found:" sysdsn("'"in"'")
exit 4

end
"CALL "loadmod" '''"in"'' ''"out"'' "strip"/T'"

address ISPEXEC "BROWSE DATASET('"out"')"
exit
/***/
/* ERROR - Error exit with message */
/***/
ERROR:

if arg(2) <> '' then say arg(2)
if arg(3) <> '' then say arg(3)
exit arg(1)

/***/
/* EXPLAIN - Self documenting routine */
/***/
EXPLAIN:

say '(c)Precisely'
say ', 'execname' Version' version ' All rights reserved.'
Say
say 'Function: Convert ANSI CC to machine CC. '
say
say 'Syntax:, %'execname' indsn outdsn strip'
say ', , , where: indsn is the input dataset (required).'
say ', , , , , , , Do not include quotes.'
say ', , , , , outdsn is the output dataset (required).'
say ', , , , , , , Do not include quotes.'
say ', , , , , strip are any parameters to pass to the '
say ', , , , , , , load module.'
Return

PDRCMETA
PDRCMETA interprets Metacode in the input print stream to create a readable file.

Note: PDRCMETA produces up to three records of output for each record of input processed.
The orig, ascii, and expl parameters control which output records are displayed.

112EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

Syntax

PDRCMETA 'indsn outdsn orig ascii expl start numl'

DefaultDescriptionParameter

The input data set name or DD name. Do not use quotation marks. Use
the format DD:DDName for DDs.

In JCL, an asterisk (*) indicates the default DD. In REXX, youmust specify
the input data set name.

indsn

hlq.SEEMETA where hlq is
your TSO ID or the default
qualifier

The output data set name or DD name. Do not use quotation marks. Use
the format DD:DDName for DDs.

In JCL, an asterisk (*) indicates the default DD. In REXX, youmust specify
the output data set name.

outdsn

NOne of the following:

• Y — Display the original data.
• N — Do not display the original data.

orig

NOne of the following:

• Y — Display the ASCII data translated into EBCDIC.
• N — Do not display the translated ASCII data.

ascii

YOne of the following:

• Y — Display an explanation of the Metacode data.
• N — Do not display an explanation.

expl

1The number of the first record to display.start

1000000The number of records to display.numl

Example

PDRCMETA 'D96.META'

113EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

In this example, PDRCMETA is to interpret Metacode in the input (D96.META) to create the readable
output (hlq.SEEMETA). The utility will display only an explanation of the Metacode data.

PDRCMETA 'D96.META D96.META.READ N Y Y 1 1000'

In the second example, PDRCMETA is to interpret Metacode in the input D96.META to create the
readable output D96.META.READ. The utility will not display the original data but will display ASCII
data and an explanation of the Metacode for the first 1,000 records.

The REXX exec automatically browses the output data set so you can verify the results.

JCL

The following shows the JCL shipped with the PDRCMETA utility.

//*jobcard
//***
//**Customize: 1. Change STEPLIB to point to the datasets where ***
//** the following are installed at your site. ***
//** - Enrichment load module ***
//** - C runtime library ***
//** 2. Change SYSUT1 and SYSUT2 DDs to be the datasets ***
//** for input and output respectively. ***
//***
//** PDRCMETA ** View a readable Metacode file ***
//** Parameters: ***
//************** Parm1: Input file name/DD ***
//************** Parm2: Output file name/DD ***
//************** Example: PARM='DD:SYSUT1 DD:SYSUT2' ***
//***
//PDRCMETA EXEC PGM=PDRCMETA,PARM='DD:SYSUT1 DD:SYSUT2'
//STEPLIB DD DSN=PDR.STREAMW.LOADCRUN,DISP=SHR
// DD DSN=SYS3.CLIB22.SEDCBASE,DISP=SHR
// DD DSN=SYS3.CLIB22.SEDCLINK,DISP=SHR
//SYSPRINT DD SYSOUT=*//SYSUT1 DD DSN=inputdsn,DISP=SHR
//SYSUT2 DD DSN=outputdsn,DISP=SHR
//*

REXX Code

The following shows the REXX Code shipped with the PDRCMETA utility.

/* REXX ** Convert ANSI CC to machine CC ****************************/
/* Changes: -Created: 02/01/96 DJK */
/* Customize: Change loadmod below to be where Enrichment is */
/* installed. */
/**/
loadmod = "'PDR.STREAMW.LOAD(PDRCCM2A)'"
address TSO
arg in out strip .

114EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

parse source . . execname .; version = '1.0'
if in = '' | out = '' then do
, Call EXPLAIN
/* REXX ** Create a readable metacode file **************************/
/* Changes: -Created: 02/01/96 DJK */
/* Customize: Change loadmod below to be where Enrichment is */
/* installed. */
/**/
loadmod = "'PDR.STREAMW.LOAD(PDRCMETA)'"
address TSO
arg in out l1 l2 l3 start num .
parse source . . execname .; version = '1.0'
if in = '' | out = '' then do

Call EXPLAIN
say 'Enter parameters in the order explained.'
say 'Do not use quotes around dataset names.'
pull in out l1 l2 l3 start num .
if in = '' then

call ERROR 8, 'Required parameter indsn is missing.'
End
saveout = out
if saveout = '.' then saveout = 'SEEMETA'
else if saveout <> '' then saveout = "'"out"'"
else saveout = 'SEEMETA'
if out = '.' then out = 'SEEMETA'
else if out <> '' then out = "''"out"''"
in = "'"in"'"

/* Allocate input and output files */
if sysdsn(in) <> 'OK' then do

say 'Input file' in 'not found:' sysdsn(in)
exit 4

end
in = "'"in"'"
address TSO "CALL "loadmod" '"in out l1 l2 l3 start num"'"
address ISPEXEC "BROWSE DATASET("saveout")"

exit
/***/
/* ERROR - Error exit with message */
/***/
ERROR:

if arg(2) <> '' then say arg(2)
if arg(3) <> '' then say arg(3)
exit arg(1)

/***/
/* EXPLAIN - Self documenting routine */
/***/
EXPLAIN:

say '(c)Precisely'
say ' 'execname' Version' version ' All rights reserved.'
say

115EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

say 'Function: Create a readable metacode file. '
say
say 'Syntax:, %'execname' indsn outdsn orig ascii expl start numl'
say ' where: indsn is the input dataset (required).'
say ' Do not include quotes.'
say ' outdsn is the output dataset. Do not include'
say ' quotes. Default is hlq.SEEMETA where'
say ' hlq is your TSO id or default qualifier.'
say ' Since these are positional arguments if you'

say ' specify any other optional arguments and '
say ' want to use the default outdsn, you must '
say ' use a period (.) for outdsn. '
say ' orig is to display the original data. Default:

N'
say ' ascii is to display ascii data. Default: N'
say ' expl is to display explanations. Default: Y'
say ' start is the starting line. Default: 1'
say ' numl is the number of records. Default: 1000000'

say ' '
say 'The order of the lines in the output is: original data, ascii'
say 'data, then explanations. Of course depending on the arguments,

'
say 'some of these lines may not appear.'
Return

PDRLNADD
PDRLNADD adds record length bytes to the beginning of each record of a print stream. Use
PDRLNADD prior to downloading a print stream from the host for use with Visual Engineer or
Enrichment. Metacode and mixed-mode AFP print streams are generally the only print stream types
that require record length bytes to identify records.

Note: Refer to Visual Engineer or the <RECORD> tag discussion in the Enrichment Language
Reference Guide for information on the methods Enrichment can use to identify records.

Syntax

PDRLNADD 'indsn outdsn length format incl startrec num'

DefaultDescriptionParameter

The name of the input print stream.indsn

The name of the output print stream.outdsn

116EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

DefaultDescriptionParameter

2The length of the length indicator, as follows:

• 2 — The first two bytes of each record comprise the length indicator.
• 4 — The first four bytes of each record comprise the length indicator.

length

PThe byte order in the length indicator, as follows:

• M — Mainframe. The length indicator for each record is coded with the most
significant byte first. This is commonly called Big Endian.

• P— PC. The length indicator for each record is coded with the least significant
byte first. This is commonly called Little Endian.

format

ESpecifies whether the length indicator includes its own length and the length of
the record, as follows:

• I — Inclusive. The record length specified in the indicator for each record
includes the length value.

• E — Exclusive. The record length specified in the indicator for each record
does not include the length value.

incl

1Specifies the number of the first record to copy from the input to the output.startrec

10Specifies the number of lines to copy from the input to the output.num

Example

PDRLNADD 'D96.INPUT(SAMPLE) D96.OUTPUT(SAMPLE) 2 M I'

In this example, PDRLNADD is to add a two-byte inclusive record length indicator to each record in
D96.INPUT(SAMPLE). The record length indicators will be with the coded most significant byte first.

JCL

The following shows the JCL shipped with the PDRLNADD utility.

//*jobcard
//***
//**Customize: 1. Change STEPLIB to point to the datasets where ***
//** the following are installed at your site. ***
//** - Enrichment load module ***
//** - C runtime library ***
//** 2. Change SYSUT1 and SYSUT2 DDs to be the datasets ***
//** for input and output respectively. ***

117EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

//***
//** PDRLNADD ** Add record length indicators to metacode ***
//***
//** PDRLNADD Parameters: ***
//************** Parm1: Input file name/DD (or * to keep IN) ***
//************** Parm2: Output file name/DD (or * to keep OUT) ***
//************** Parm3: Options (delimited by a space): ***
//************** len can be 2 or 4 to designate the length
//************** of the length indicator. Default: 2
//************** typ can be P for PC or M for mainframe.
//************** Default: P
//************** inc can be I (include) or E (exclude).
//************** Default: E
//************** start is the starting line. Default: 1
//************** numl is the number of records. Default: 1000000
//************** Example: PARM='DD:IN DD:OUT'
//************** PARM='DD:IN DD:OUT 2 M I 1 2000'
//**
//PDRLNADD EXEC PGM=PDRLNADD,PARM='DD:IN DD:OUT'
//STEPLIB DD DSN=PDR.STREAMW.LOAD,DISP=SHR
// DD DSN=SYS3.CLIB22.SCEERUN,DISP=SHR
//SYSPRINT DD SYSOUT=*
//IN DD DSN=inputdsn,DISP=SHR
//OUT DD DSN=outputdsn,DISP=SHR
//*

REXX Code

The following shows the REXX Code shipped with the PDRLNADD utility.

/* REXX ** Add length indicators to Metacode ***********************/
/* Changes: -Created 03Jan96 DRBallard */
/* Customization: Change the loadmod variable to be the dataset */
/* where Enrichment is installed. */
/**/
loadmod = "'PDR.STREAMW.LOAD(PDRLNADD)'"
address TSO
arg in out len sb incl start numlines .
parse source . . execname .; version = '1.0'
if in = '' | out = '' then do

Call EXPLAIN
say 'Enter parameters in the order explained.'
say 'Do not use quotes around dataset names.'
pull in out len sb incl start numlines .
if in = '' | out = '' then

call ERROR 8, 'Required parameters indsn and outdsn are missing.'
End
In = "'"||in||"'"
Out = "'"||out||"'"

/* Allocate input and output files */

118EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

if sysdsn(in) <> 'OK' then
call ERROR 8, 'Input file' in 'not found:' sysdsn(in)

say 'Allocating data sets.....'
dummy = outtrap('tso_out.','*')
'FREE DDNAME(IN)'
'FREE DDNAME(OUT)'
dummy = outtrap('OFF')
'ALLOCATE DDNAME(IN) DSN('in') SHR'
if rc <> 0 then

call ERROR 9, 'Unable to allocate Input file' in
if sysdsn(out) = 'OK' then do

say out 'already exists. Do you want to replace it? (Y or N)'
pull ans
if left(ans,1) <> 'Y' then call ERROR 4, 'User requested exit'
'ALLOCATE DDNAME(OUT) DSN('out') SHR'

end
else do
if pos('(',out)>0 then

'ALLOCATE DDNAME(OUT) DSN('out') SHR'
else

'ALLOCATE FILE(OUT) DSN('out') NEW SPACE(30,12) TRACKS ',
'LRECL(155) BLKSIZE(27998) RECFM(V,B,M)'

end
if rc <> 0 then

call ERROR 10, 'Unable to allocate Output file' out
"CALL "loadmod" ''"in"' '"out"' "len sb incl start numlines"'"
dummy = outtrap('tso_out.','*')
'FREE DDNAME(IN)'
'FREE DDNAME(OUT)'
dummy = outtrap('OFF')

exit
/***/
/***/
/* ERROR - Error exit with message */
/***/
ERROR: if arg(2) <> '' then say arg(2)

if arg(3) <> '' then say arg(3)
exit arg(1)

/***/
/* EXPLAIN - Self documenting routine */
/***/
EXPLAIN:

say '(c)Precisely'
say ' 'execname' Version' version ' All rights reserved.'
Say
say 'Function: Add length indicators to Metacode. '
say
say 'Syntax: %'execname' indsn outdsn len type incl start numl'
say ' where: indsn is the input dataset (required).'
say ' Do not include quotes.'
say ' outdsn is the output dataset (required).'
say ' Do not include quotes.'

119EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

say ' len can be 2 or 4 to designate the length'
say ' of the length indicator. Default: 2'
say ' type can be P for PC or M for mainframe.'
say ' Default: P'
say ' incl can be I (include) or E (exclude).

Default:E'
say ' start is the starting line. Default: 1'
say ' numl is the number of records. Default: 1000000'

return

PDRLNSUB
PDRLNSUB removes record length bytes from the beginning of each record of a print stream. Use
PDRLNSUB if you are uploading a print stream that contains these record length bytes to the host.
Generally, Metacode and mixed-mode AFP print streams contain these bytes.

Syntax

PDRLNSUB 'indsn outdsn length format incl'

DefaultDescriptionParameter

The name of the input print stream.indsn

The name of the output print stream.outdsn

2The length of the length indicator, as follows:

• 2 — The first two bytes of each record comprise the length indicator.
• 4 — The first four bytes of each record comprise the length indicator.

length

PThe byte order in the length indicator, as follows:

• M — Mainframe. The length indicator for each record is coded with the most
significant byte first. This is commonly called Big Endian.

• P — PC. The length indicator for each record is coded with the least significant
byte first. This is commonly called Little Endian.

format

ESpecifies whether the length indicator includes its own length and the length of the
record, as follows:

• I — Inclusive. The record length specified in the indicator for each record includes
the length value.

• E — Exclusive. The record length specified in the indicator for each record does
not include the length value.

incl

120EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

Example

PDRLNSUB 'TEST.META TEST.OUT 2 M I'

In this example, each record in the input (TEST.META) contains a two-byte length indicator. The
length indicators include their own length and are coded with themost significant byte first. PDRLNSUB
is to remove length indicators from the input records and store the result in TEST.OUT.

JCL

The following shows the JCL shipped with the PDRLNSUB utility.

//*jobcard
//***
//**Customize: 1. Change STEPLIB to point to the datasets where ***
//** the following are installed at your site. ***
//** - Enrichment load module ***
//** - C runtime library ***
//** 2. Change UT1 and UT2 DDs to be the datasets ***
//** for input and output respectively. ***
//***
//** PDRLNSUB ** Remove prefixes and unblock records ***
//***
//** PDRLNSUB Parameters: ***
//************** Parm1: Input file name/DD (or * to keep UT1) ***
//************** Parm2: Output file name/DD (or * to keep UT2) ***
//************** Parm3: Options: ***
//************** /H = help information ***
//************** Example: PARM='DD:IN DD:OUT /E=L/P=2' ***
//***
//PDRLNSUB EXEC PGM=PDRLNSUB,
// PARM=('/E=L /P=2 /F=1 /H DD:UT1 DD:UT2')
//STEPLIB DD DSN=PDRC.R31.STREAMW.LOADCRUN,DISP=SHR
// DD DSN=SYS3.CLIB22.SEDCBASE,DISP=SHR
// DD DSN=SYS3.CLIB22.SEDCLINK,DISP=SHR
//SYSPRINT DD SYSOUT=*
//UT1 DD DSN=your.input,DISP=SHR
//UT2 DD DSN=your.output,DISP=SHR
//*

REXX Code

The following shows the REXX Code shipped with the PDRLNSUB utility.

/* REXX ** Remove prefixes and unblock records. *********************/
/* Changes: -Created 24Apr97 DRBallard */
/* -10Jun97 fix quote problem on the CALL loadmod */
/* Customization: Change the loadmod variable to be the dataset */
/* where Enrichment is installed. */

121EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

/**/
loadmod = "'PDR.STREAMW.LOAD(PDRLNSUB)'"
address TSO
arg in out switches
parse source . . execname .; version = '1.1'
if in = '' | out = '' then do

Call EXPLAIN
say 'Enter parameters in the order explained.'
say 'Do not use quotes around dataset names.'
pull in out switches if in = '' | out = '' then

call ERROR 8, 'Required parameters indsn and outdsn are missing.'
end
in = "'"||in||"'"
out = "'"||out||"'"

/* Allocate input and output files */
if sysdsn(in) <> 'OK' then

call ERROR 8, 'Input file' in 'not found:' sysdsn(in)
say 'Allocating data sets.....'
dummy = outtrap('tso_out.','*')
'FREE DDNAME(IN)'
'FREE DDNAME(OUT)'
dummy = outtrap('OFF')
"ALLOCATE DDNAME(IN) DSN("in") SHR"
if rc <> 0 then

call ERROR 9, 'Unable to allocate Input file' in
if sysdsn(out) = 'OK' then do

say out 'already exists. Do you want to replace it? (Y or N)'
pull ans
if left(ans,1) <> 'Y' then call ERROR 4, 'User requested exit'
"ALLOCATE DDNAME(OUT) DSN("out") SHR"

end
else do

if pos('(',out)>0 then
'ALLOCATE DDNAME(OUT) DSN('out') SHR'

else
'ALLOCATE FILE(OUT) DSN('out') NEW SPACE(30,12) TRACKS ',

'LRECL(155) BLKSIZE(27998) RECFM(V,B,M)'
end
if rc <> 0 then

call ERROR 10, 'Unable to allocate Output file' out
"CALL "loadmod" '"switches" '"in"' '"out"' '"
/* "CALL "loadmod "'" switches in out "'"*/

dummy = outtrap('tso_out.','*')
'FREE DDNAME(IN)'
'FREE DDNAME(OUT)'
dummy = outtrap('OFF')

exit
/***/
/* ERROR - Error exit with message */
/***/
ERROR:

if arg(2) <> '' then say arg(2)

122EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

if arg(3) <> '' then say arg(3)
exit arg(1)

/***/
/* EXPLAIN - Self documenting routine */
/***/
EXPLAIN:

say '(c)Precisely'
say ' 'execname' Version' version ' All rights reserved.'
say
say 'Function: Remove prefixes and unblock records.'
say
say 'Syntax: %'execname' indsn outdsn switches'
say ' where: indsn is the input dataset (required).'
say ' Do not include quotes.'
say ' outdsn is the output dataset (required).'
say ' Do not include quotes.'
say ' switches are 1 or more parameters from: '
say ' /c /e /f /h /i /n /o /p '
say ' /c=EBCDIC|ASCII, /e=Big|Little|Numeric'
say ' /f=1|M|S /h (help) '
say ' /i /n '
say ' /o=1|2 /p=2|4'
return

PDRXCME
PDRXCME converts DJDE print streams that use CMEs into print streams that use a font index. It
is easier for Enrichment to add new records with new fonts, such as barcodes, to a print stream that
uses a font index.

Syntax

PDRXCME 'indsn outdsn setdsn switches'

DefaultDescriptionParameter

DD:SYSUT1The input data set name. Do not include quotes.indsn

DD:SYSUT2The output data set name. Do not include quotes.outdsn

DD:SYSCMEThe setup data set name. Do not include quotes.setdsn

123EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

DefaultDescriptionParameter

/F/MUp to three switches with no intervening spaces. A slash must precede each
switch. The first switch indicates the record format to which PDRXCME will
convert the input, as follows:

• /F — Fixed. Keep output records as they were in the input print stream.
• /V — VBA. Strip blanks from each record in the output print stream.

switches

The second switch indicates the type of carriage controls the print stream
contains:

• /A — The print stream contains ANSI carriage controls.
• /M — The print stream contains machine carriage controls.

The third switch, /T, sets PDRXCME to issue trace information for every 1,000
records.

Example

PDRXCME 'TEST.DATA TEST.OUTPUT' /V/T

In this example, PDRXCME is to convert CMEs in the input (TEST.DATA) to font indexes in the
output (TEST.OUTPUT). The utility will convert the record format to VBA (that is, it will remove all
spaces from the end of each record) and issue trace information every 1,000 records.

JCL

The following shows the JCL shipped with the PDRXCME utility.

//*jobcard
//***
//**Customize: 1. Change STEPLIB to point to the datasets where ***
//** the following are installed at your site. ***
//** - Enrichment load module ***
//** - C runtime library ***
//** 2. Change SYSUT1 and SYSUT2 DDs to be the datasets ***
//** for input and output respectively. ***
//***
//** PDRXCME ** Convert Xerox CME type records to FONTINDEX ***
//***
//** PDRXCME Parameters: ***
//************** Parms are not necessary for default processing ***
//************** Parm1: Input file name/DD (or * to keep SYSUT1) ***
//************** Parm2: Output file name/DD (or * to keep SYSUT2) ***
//************** Parm3: Setup file name/DD (or * to keep SYSCME) ***

124EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

//************** Parm4: Options (no space between): ***
//************** /F - Fixed (keep lines same as input) - DEFAULT ***
//************** /V - VBA output (strip blanks from each record) ***
//************** /A - ANSI carriage control in column 1 ***
//************** /M - Machine carriage control in col 1 - DEFAULT ***
//************** /T - Trace every 1000 lines ***
//************** Example: PARM='* * * /V/A/T' ***
//************** PARM='DD:IN DD:OUT DD:CMEIN /T' ***
//***
//** Updates: ***
//** Version 1.1 09/24/96 - Add font index to non-print records ***
//***
//PDRCCM2A EXEC PGM=PDRXCME,PARM='* * * /V/T'

//STEPLIB DD DSN=PDR.STREAMW.LOAD,DISP=SHR
// DD DSN=SYS3.CLIB22.SEDCBASE,DISP=SHR

UNIX/Linux Utilities

Running UNIX/Linux Utilities

All of the UNIX/Linux utilities run interactively from the command line or can be included in a shell
script.

unblock and block are generally executed before and after a production Enrichment run. These
utilities allow Enrichment to process blocked print streams, a capability not built into the program.

dumpafp is generally run ad hoc during the analysis and setup of an Enrichment project.

block
block adds a blocking indicator to the beginning of record blocks in a print stream. All records in
the print stream must have record length indicators. Use block when you need record blocking in
a print stream (for example, when you have used unblock prior to running Enrichment and need
blocking to print). To use block to support the IBM record and block prefix, specify –e=I as a command
line parameter. Do not specify –b, -i or -p.

Note: All UNIX/Linux utility names must be lowercase.

Syntax

block [-b= -e= -h -i –p=] inputfile outputfile

125EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

DefaultDescriptionParameter

Each record will be blocked.The maximum blocking size. Records will be accumulated
sequentially into blocks, and no block will exceed the maximum
blocking size. Processing will terminate if any record exceeds the
maximum blocking size.

-b=

LThe byte order in both the blocking length and record length indicator,
as follows:

• B — The length indicator is coded with the most significant byte
first. This is commonly called Big Endian.

• L — The length indicator is coded with the least significant byte
first. This is commonly called Little Endian.

• N — Numeric
• I — IBM

-e=

Displays help for the utility.-h

The blocking indicator includes its own length and the length of the
block of records. If you do not use -i, the blocking indicator includes
only the length of the block of records.

-i

2The length of both the blocking indicator and record length indicator,
as follows:

• 2 — A two-byte length is used for record length indicators and will
also be used for blocking length indicators.

• 4 — A four-byte length is used for record length indicators and will
also be used for blocking length indicators.

-p=

The name of the input file.inputfile

The name of the output file.outputfile

Example

block -e=L -p=4 -i p2pef.in p2pef.out

In this example, block is to add four-byte blocking indicators to groups of records in the input
p2pef.in. The blocking indicators will include their own length and are coded least significant byte
first.

126EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

dumpafp
dumpafp interprets the AFP codes in an AFPDS or AFP mixed print stream to create a readable
file.

Syntax

dumpafp [-a -c -e -h -i -n -p -t –v -x] file

Note: The following dumpafp parameters are common switches that perform the same
functions as parameters of the <RECORD> tag: -a, -c, -e, -i, -p, -t. Refer to the Enrichment
Language Reference Guide for more information.

DefaultDescriptionParameter

YOne of the following to determine if AFP records are terminated:

• YAFP records are terminated with characters specified in the -t parameter.
• N — AFP records are not terminated.

-a=

EThe text format of the print stream, as follows:

• E — Text records use the EBCDIC character set.
• A — Text records use the ASCII character set.

-c=

BThe byte order in both the blocking length and record length indicator, as follows:

• B — The length indicator is coded with the most significant byte first. This is
commonly called Big Endian.

• L — The length indicator is coded with the least significant byte first. This is
commonly called Little Endian.

-e=

Displays help for the utility.-h

Indicates that the record length indicator includes its own length and the length of the
record. If you do not use -i, the record length indicator includes only the length of the
record.

-i

Numbers the output lines.-n

2The length of the record length indicator, as follows:

• 2 — The first two bytes of each record comprise the record length indicator.
• 4 — The first four bytes of each record comprise the record length indicator.

-p=

127EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

DefaultDescriptionParameter

DOS: D,A

UNIX: A

Specifies the terminator character(s) (hexadecimal codes), separated by commas.-t=

Displays the verbose mode for AFP explanations.-v

Indicates that transparent text in PTX records is in ASCII format.-x

The name of the input file.file

Example

dumpafp -c=A -t=A unix.afp

In this example, dumpafp is to display the input unix.afp. The arguments indicate that the input
file is in ASCII format and that each record is terminated with X'0A' (an ASCII line feed).

etoa
etoa converts files from the ASCII character set to the EBCDIC character set, or vice versa.

Syntax

etoa inputfile outputfile [AE|EA]

DefaultDescriptionParameter

NoneThe name of the input file.inputfile

NoneThe name of the output file.outputfile

EAOne of the following:

• AE — Input file will be translated from ASCII to EBCDIC.
• EA — Input file will be translated from EBCDIC to ASCII.

[AE|EA]

128EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

Example

etoa input.ascii input.ebcdic AE

This will translate the file (input.ascii) to the output file (input.ebcdic) in EBCDIC format.

pdrcca2m
pdrcca2m converts ANSI carriage controls to machine carriage controls.

Syntax

pdrcca2m inputfile outputfile switches

DefaultDescriptionParameter

input.linThe name of the input file.inputfile

output.linThe name of the output file.outputfile

/F/EUp to three switches with no intervening spaces. A slash
must precede each switch.

The first switch specifies the record format to which
pdrcca2m will convert the input, as follows:

• /F — Keep output records as they were in the input print
stream.

• /V — Strip blanks from each record in the output print
stream.

switches

The second switch specifies how to pad records inserted
into the input print stream, as follows:

• /A — Use the ASCII hexadecimal character x'20' to pad
inserted records.

• /E—Use the EBCDIC hexadecimal character x'40' to pad
inserted records.

The third switch, /T, sets pdrcca2m to issue trace
information for every 1,000 records.

• /T — Sets pdrcca2m to issue trace information for every
1,000 records.

129EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

Example

pdrcca2m test1.in test1.out /V/T

In this example, pdrcca2m is to convert ANSI carriage controls in test1.in to machine carriage
controls in test1.out. pdrcca2m will remove all spaces from the end of each record and will issue
trace information every 1,000 records.

pdrccm2a
pdrccm2a converts machine carriage controls to ANSI carriage controls.

Syntax

pdrccm2a inputfile outputfile switches

DefaultDescriptionParameter

input.linThe name of the input file.inputfile

output.linThe name of the output file.outputfile

/F/EUp to three switches with no intervening spaces. A slash must precede each
switch.

The first switch specifies the record format to which pdrccm2a will convert
the input, as follows:

• /F — Keep output records as they were in the input print stream.
• /V — Strip blanks from each record in the output print stream.

switches

The second switch specifies how to pad records inserted into the input print
stream, as follows:

• /A — Use the ASCII hexadecimal character x'20' to pad inserted records.
• /E—Use the EBCDIC hexadecimal character x'40' to pad inserted records.

The third switch, /T, sets pdrccm2a to issue trace information for every 1,000
records.

• /T — sets pdrccm2a to issue trace information for every 1,000 records.

130EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

Example

pdrccm2a test1.in test1.out /V/T

In this example, pdrccm2a is to convert machine carriage controls in test1.in to ANSI carriage
controls in test1.out. pdrccm2a will remove all spaces from the end of each record and will issue
trace information every 1,000 records.

pdrxcme
pdrxcme converts DJDE print streams that use CMEs into print streams that use a font index. It is
easier for Enrichment to add new records with new fonts, such as barcodes, to a print stream that
uses a font index.

Syntax

pdrxcme inputfile outputfile setupfile switches

DefaultDescriptionParameter

input.djdThe name of the input file. Do not include quotes.inputfile

output.djdThe name of the output file. Do not include quotes.outfile

setupfileThe name of the setup file. Do not include quotes.setupfile

/F/MUp to three switches with no intervening spaces. A slash must precede each
switch.

The first switch specifies the record format to which PDRXCME will convert the
input, as follows:

• /F — Keep output records as they were in the input print stream.
• /V — Strip blanks from each record in the output print stream.

switches

The second switch indicates the type of carriage controls the print stream contains:

• /A — The print stream contains ANSI carriage controls.
• /M — The print stream contains machine carriage controls.

The third switch, /T, sets pdrxcme to issue trace information for every 1,000
records.

• /T — sets pdrxcme to issue trace information for every 1,000 records.

131EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

Example

pdrxcme TEST.DATA TEST.OUTPUT /V/T

In this example, pdrxcme is to convert CMEs in the input (TEST.DATA) to font indexes in the output
(TEST.OUTPUT). The utility will remove all spaces from the end of each record and will issue trace
information every 1,000 records.

pswrapper
pswrapper is a utility program that converts the Mailer’s Choice tag file from line data into PostScript.

Syntax

pswrapper inputfile outputfile [fontname fontsize] [psswitch]

DefaultDescriptionParameter

NoneThe Mailer’s Choice tag file to be converted.inputfile

NoneThe name of the output file.outputfile

CourierThe font to be used in the output file.fontname

12The size (in points) of the font in the output file.fontsize

NOne of the following:

• Y — Will send PCL commands to switch the printer into PS mode and then
back to PCL when the file is finished printing.

• N — Will not send PCL commands to switch the printer into PS mode.

psswitch

unblock
unblock removes the blocking indicator from the beginning of each group of records in a print stream.
For example, it can be used prior to running Enrichment because while Enrichment does not recognize
record blocking, it does recognize record length indicators

Syntax

unblock [-e= -h -i –p=] inputfile outputfile

132EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

DefaultDescriptionParameter

LThe byte order in both the blocking length and record length indicator, as follows:

• B — The length indicator is coded with the most significant byte first. This is
commonly called Big Endian.

• L — The length indicator is coded with the least significant byte first. This is
commonly called Little Endian.

-e=

Displays help for the utility.-h

The blocking indicator includes its own length and the length of the block of records.
If you do not use -i, the blocking indicator includes only the length of the block of
records.

-i

2The length of the blocking indicator, as follows:

• 2 — Two bytes are used for the blocking indicator.
• 4 — Four bytes are used for the blocking indicator.

-p=

The name of the input file.inputfile

The name of the output file.outputfile

Example

unblock -e=L -p=4 -i p2pef.tst p2pef.out

In this example, each record in the input (p2pef.tst) contains a four-byte length indicator. The
length indicators include their own length and are coded with the least significant byte first. unblock
is to remove blocking indicators from the input records and place the result in the output p2pef.out.

133EngageOne Enrichment 7.4.1 Developer Guide

Developing an Application

4 - Commonly-Used
Features

In this section

Enhancing Content...135
Sorting, Outsorting, and Output..158
Postal Processing...179
Managing Print Stream Resources..194
Creating a Vault Journal File..196

Enhancing Content

Enrichment allows you to enhance content by adding, removing, and changing content in a print
stream. Some of the most commonly-used content enhancement features are described below.

Replacing Text

You can use the <FIELD> tag to direct Enrichment to take several actions on fields, including
replacing text. Use the replace action (R) to update the print stream if the value of the associated
field variable changes after it is extracted from the document. The variable value could be changed
in a number of ways—such as through CASS address cleansing or by an assignment statement in
the rules.

For example, if you want to change a field called %%Account_Number:

<FIELD> %%Account_Number R

The new %%Account_Number value will automatically replace the old value when the document is
written.

Note that the coding above will affect only the first occurrence of %%Account_Number on the
document. Setting the action parameter to RA will affect all fields located by that <FIELD> tag. To
change all occurrences, use the following coding:

<FIELD> %%Account_Number RA

Note: For the example, any occurrences of the account number not preceded by the reference
string will not be replaced.

You can format the value of %%Account_Number in the rule file so that it prints out properly. Use
the <REPLACE> tag within the Field group to specify whether the field location can “grow” or “shrink.”
For information on the <REPLACE> tag, see theEnrichment Language Reference Guide. The following
shows the coding to allow the account number to grow from 12 to 20 characters in length without
overwriting other text.

<FIELD> %%Account_Number RA
<REFERENCE> K
<LOCATION> K
<REPLACE> 20 Y

</FIELD>

135EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

Deleting Information

To delete information from a document, use the <FIELD> tag’s delete action (D) as follows:

<FIELD> %%Account_Number D

The coding above will cause the first occurrence of the field to be blanked out. The value of
%%Account_Number will be extracted.

Moving Information

To move an object, use the Add tag group. You must define the object as a field and then extract
and delete it. You can then use rules to change the contents of the field before replacing the field
information on the page using an Add group. You can also use this method to change the font size;
for example, to reduce the size of an address block to allow a POSTNET™ barcode to fit in a window
envelope.

Adding Barcodes

Enrichment can add many types of barcodes to a document. Depending on the type of print stream,
there are two methods that Enrichment can use to add a barcode: drawn barcodes and font-based
barcodes.

Drawn Barcodes

If you print in AFP, Xerox Metacode, PCL, PDF, or PostScript environments, Enrichment can draw
the barcode. Drawn barcodes eliminate the need to acquire or modify font resources. To use drawn
barcodes, specify the type of barcode you want to add using the <ADDTYPE> tag in the Add tag
group. For example, the coding shown in the following figure will add a DataMatrix barcode to the
last page of documents in an AFP line data print stream.

<add>
<addtype> PDF417 <! PDF417 barcode. >
<position> 1680 2400 PELS <! Position. >
<addpart> 1234567DFAA343GGA <! Value to encode. >
<orient> 2 <! Vertical orientation. >
<onpage> LAST <! Last page of each document. >
</add>

136EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

For more information, see the Enrichment Language Reference Guide discussion on the <ADDTYPE>
tag.

Keep the following in mind for drawn barcodes:

• Enrichment can only draw certain barcode types (see Supported Drawn Barcode Types on page
138). If you want to add a barcode type that Enrichment cannot draw, use a font-based barcode.

• Using a font for Interleaved 2of5 barcodes requires you to map the characters (generally in a rule
file). It is easier to draw this type of barcode.

• Since drawn barcodes do not require a barcode font, there are no size or orientation restrictions.
• Some applications produce line data documents for printing on AFP printers in LINE mode. You
must print such documents in PAGE mode to process PTX records added by Enrichment.

Font-Based Barcodes

Font-based barcodes are valid for any print stream type. As specified in the control file, Enrichment
uses a font to add the barcode to the document as text. You can add any type of font-based barcode,
as long as a corresponding barcode font is available for your printer.

To create a font-based barcode, you must:

• Set the value of a variable to the barcode value
• Add that variable to a document using a barcode font.

Note: Enrichment uses AFP structured fields or Metacode commands to draw OMR marks
and barcode lines. If you are not using an AFP printer in PAGE mode or a Metacode printer,
you must use <ADDTYPE>TEXT in conjunction with the <POSLINE> tag or the Insertrec tag
group to add font-based barcodes.

To create a font-based barcode, specify <ADDTYPE>TEXT and use the <FONTNUM> tag to specify
a font that Enrichment will use to print the barcode. For example, the coding shown in the following
figure will add a single OMR mark to the last page of documents in an impact print stream.

<add>
<addtype> TEXT <! OMR using a font. >
<posline> 1 40 TRC HORIZONTAL <! Goes on first line. >
<fontnum> 8 <! Font #8 is the OMR font. >
<addpart> 1 <! 1=end of document. >
<onpage> LLAST <! last page of last doc only >
</add>

137EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

Using the Add Tag Group with DJDE
Within impact and DJDE documents, you can use the Add group tags shown below to include text
or a barcode by specifying its location (line or record number for text, record number for barcodes)
and the font to use.

<ADD>
<ADDTYPE> TEXT
<ADDPART> <! several may be required >
<POSLINE> <! specify the position in lines or records>
<FONTNUM> <! specify the font number >
<ONPAGE>
</ADD>

Impact and DJDE documents require a barcode font to be available to add a barcode. Since the
barcode font is not the same as the normal text font, you cannot just put the barcode information on
another record in the print stream. As the following shows, the barcode should be added as an
overprint record with the correct font.

Incorrect: Correct:
1 MyText... BARCODE 1 MyText...

+6 BARCODE

The Add group <POSLINE> and <FONTNUM> tags allow you to add these barcodes automatically.

Supported Drawn Barcode Types
Enrichment can draw the following types of barcodes:

Interleaved 2OF5

Interleaved 2of5 barcodes contain numbers. The value must contain an even number of digits. If the
value does not contain an even number of digits, Enrichment will add a leading zero. The contents
of the barcode in a human-readable form (human-readable interface, or HRI) is sometimes included
below the barcode. The characters in the HRI are literal translations of the barcode. The inclusion
of HRI is optional

Matrix 2of5

Matrix 2of5 barcodes contain numbers. The value must contain an even number of digits. If the value
does not contain an even number of digits, Enrichment will add a leading zero. This barcode may

138EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

also contain a check digit. The contents of the barcode in a human-readable form (human-readable
interface, or HRI) is sometimes included below the barcode. The characters in the HRI are literal
translations of the barcode. The inclusion of HRI in is optional

Code 3OF9

Code 3of9 barcodes contain information readable by the optical scanners on common inserters and
barcode sorters. The characters valid in a Code 3of9 barcode are:

• The numbers 0 through 9
• The capital letters A through Z
• Dash (-), space, period (.), dollar sign ($), forward slash (/), plus sign (+), percent symbol (%), and
asterisk (*).

The contents of the barcode in human-readable form (an HRI) is sometimes included below the
barcode. The characters in the HRI are literal translations of the barcode. The inclusion of HRI in a
Code 3of9 barcode is optional

Code 128

Code 128 barcodes can contain the entire ASCII character set. The contents of the barcode may be
shown in human-readable form (an HRI) below the barcode.

4-State barcodes/Intelligent Mail Barcodes

4-State barcodes (called “Intelligent Mail Barcodes” in the U.S.) are used by postal authorities to
encode address information so that the mailpiece can be processed using automated equipment
that can read the barcode and route the mailpiece accordingly. The 4-State barcode/Intelligent Mail
Barcode can also be used for mail tracking.

139EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

OMR marks

OMR marks (sometimes called dash marks) are binary on/off marks readable by an optical scanner.
They’re often used by inserter equipment to control which pages and inserts to put in envelopes.
Such marks are the simplest type of barcode and are normally associated with less sophisticated
inserters.

PLANET Code® and POSTNET™ Code barcodes

POSTNET™ barcodes are used by USPS® equipment to automate mail processing. PLANET®
barcodes are used to uniquely identify each mailpiece in the USPS® mailstream for purposes of
tracking the mailpiece. For detailed information on the use of PLANET Code® and POSTNET™Code
barcodes, refer to the USPS® Web site.

DataMatrix

The DataMatrix barcode is a two-dimensional (2D) barcode, meaning that data is encoded both
horizontally and vertically. DataMatrix barcodes can encode text, numbers, and data. They can
encode more data in a smaller area compared to other barcodes.

PDF417

The PDF417 barcode is a two-dimensional (2D) barcode, meaning that data is encoded both
horizontally and vertically. PDF417 barcodes can encode text, numbers and data.

China Post

The China Post barcode is used on mailpieces handled by the Chinese postal authority.

140EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

MaxiCode

The MaxiCode barcode is a two-dimensional (2D) barcode used primarily on UPS shipping labels.
Enrichment supports MaxiCode encoding modes 2 through 6 and has several tags that make it easy
to create a MaxiCode barcode for use on a UPS shipping label. These tags start with “UPS” (for
example, <UPSPOSTALCODE>).

Aztec Code

The Aztec Code barcode is a two-dimensional (2D) barcode typically used online, on mobile devices,
and on digital photographs of documents. The smallest Aztec Code symbol is 15x15 modules square,
and the largest is 151x151. The smallest Aztec Code symbol encodes 13 numeric or 12 alphabetic
characters, while the largest Aztec Code symbol encodes 3832 numeric or 3067 alphabetic characters
or 1914 bytes of data.

QR Code

The QR Code (Quick Response Code) barcode is two-dimensional (2D). The maximum symbol size
is 177 modules square, capable of encoding 7366 numeric characters, or 4464 alpha numeric
characters. QR Code is designed for rapid reading using CCD array cameras and image processing
technology. The information encoded can be made up of four standardized "modes" of data (numeric,
alphanumeric, byte/binary, and Kanji), or by supported extensions of virtually any kind of data.

141EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

EAN-13

The EAN-13 barcode (originally European Article Number, but now renamed International Article
Number) is a 13 digit (12 data and 1 check) barcoding standard which is a superset of the original
12-digit Universal Product Code (UPC) system. The numbers encoded in EAN-13 bar codes are
product identification numbers.

Commonly-Used System Variables
The following table lists system variables commonly used to create barcodes.

DescriptionSystem Variable

The carrier route.%%CARRIER

The overall document number, regardless of which output contains the document.%%DOCUMENT_NO

The page number of the current logical page.%%L_PAGE_NO

The total number of logical pages in the document.%%L_TOTAL_PAGES

The logical front page number of the current page in the document.%%PAGE_NO

Information to place in the POSTNET™ barcode.

Typically, %%POSTNET is used. However, if you have an IBM 3800 Model 1 printer, use
%%3800_POSTNET or (if the printer is in Compatibility mode) %%COMP_POSTNET.
Use %%POSTNET if you use an IBM Model 3800 printer in full AFP mode.

%%POSTNET

%%COMP_POSTNET

%%3800_POSTNET

The sector and segment that comprise the last four characters of a ZIP + 4
®
.%%SECSEG

142EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

DescriptionSystem Variable

The sequence number for each document in the file or files identified in an Output tag
group.

%%SEQUENCE_NO

The total number of logical front pages in the document.%%TOTAL_PAGES

Ten characters that indicate the ZIP + 4
®
.%%ZIPCODE

Adding Barcodes and Other Objects
To add objects such as barcodes, images, text, and TLEs to a print stream, follow these steps. For
more information see the Enrichment Language Reference Guide.

1. Create a control file. For more information, see Developing a Control File on page 75.
2. If you are adding a barcode or text and the value should be based on data in the print stream,

define a field that identifies the data. For example, if you want to create a barcode to represent
the account number, define a field to contain the account number. To define a field, use the
<FIELD> tag group.

3. Decide whether you want to add the object to all outputs or just one output then do one of the
following.

• If you want to add the object to all outputs, create a standalone Add tag group in your control
file.

• If you want to add the object to a specific output, create an Add tag group in the Output tag
group where you want to add the object.

4. In the Add tag group, create an <ADDTYPE> tag to specify the type of object you want to add
(2of5 barcode, PLANET Code® barcode, text, etc).

5. In the Add tag group, create one or more <ADDPART> tags to specify the value of the object you
are adding. For example, if you are adding a barcode, the tag would specify the numbers that
make up the barcode.

Note: If you are creating a MaxiCode barcode and specify <MAXICODE> with a value
of 2 or 3, do not use the <ADDPART> tag to specify the value to encode. Instead, use
the tags that begin with “UPS” (for example, <UPSPOSTALCODE>).

6. (AFP, Metacode, PCL, PDF, and PostScript. print streams only)

In the Add tag group, create a <POSITION> tag to specify the horizontal and vertical placement
of the object on the page.

7. (Multiple up AFP print streams only)

In the Add tag group, create a <POSMULTUP> tag to specify the horizontal and vertical placement
of the object on the page.

143EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

8. (Line data only)

If you are adding a text object (<ADDTYPE>TEXT), create a <POSLINE> tag in the Add tag group.
The tag <POSLINE> specifies the horizontal and vertical placement of the text object on the
page.

9. (AFPDS print streams only)

Use the <SMARTMCFS> tag to specify whether or not Enrichment should use the font in the MCF1
or MCF2 records when adding text for which no font was specified. This only applies to
<ADDTYPE> TEXT and barcodes added with HRI text (HRI, or “human-readable interface”, is
the text that appears below a barcode).

For information on additional options that you can use when adding barcodes, images, text, and
TLEs, refer to the documentation on the Add tag group in the Enrichment Language Reference
Guide..

Adding Drawn Barcodes to Metacode Documents
You can add drawn barcodes to Xerox Metacode data. Enrichment adds the commands necessary
to draw the barcode. Use the Add group tags shown below to create a drawn barcode for Metacode
data:

<ADD>
<ADDTYPE> <! set to barcode type, example: 3of9>
<ADDPART> <! several may be required to build >

<! the barcode >
<POSITION> <! if not a multiple-up input >
<ORIENT>
<HEIGHT>
<BARS>
<ONPAGE>
</ADD>

Adding Font-Based Barcodes to Metacode Documents
You can add font-based barcodes to Xerox Metacode data. This is the same as adding text.
Enrichment adds the commands necessary to print the lines in the barcode using a font. The
appropriate font must be installed on your system or printer. You may need to adjust your Xerox
form (FRM) or JSL to include the barcode font. Use the Add group tags shown below to create this
type of barcode.

<ADD>
<ADDTYPE> TEXT
<ADDPART> <! several may be required >
<POSITION> <! the location to print the barcode >
<FONTNUM> <! specify a barcode font for line data>

144EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

<ONPAGE>
</ADD>

Note: For Metacode documents, the font number specified in the <FONTNUM> tag must be
defined in the FRM or JSL. If you need to print the HRI as well as the font-based barcode,
you must use a second <ADD> tag that defines the HRI font and position. The <ADDPART>
tags will be the same as those for the actual barcode.

Adding Barcodes with Insert Records
In DJDE documents, you can include the barcode in an insert record as a second logical page. You
can then use the Insertrec tag group to add the logical page to the document. The insert record
should include inline variables (for example; %%barcode). Enrichment will place the value of the
variable into the insert record.

Note: You will need to use the Insertrec tag group to add barcodes if you cannot add overprint
records to your print stream.

Examples
The following example demonstrates how to split an input print stream into two print streams based
on the number of pages in the document, then adds OMR marks to one output and a DataMatrix
barcode to another.

<input>
<name> INPUT <! Identifiable name. >
<file> DD:INPUT1 <! Input file name. >
<type> AFPL A <! AFP line data w/ANSI controls.>
<doc> T %%AcctNum CHANGE <! Top of document when Account changes.>
<field> %%AcctNum KA <! Find all occurrences. >

<ref> ' ' 'Account Number:' 44 <! Reference starts in column 44>
<loc> 0 2 8 <! Same line as reference, move 2 >

</field> <! column, get 8 bytes. >
</input>
<rule>

<content> <! Rule file is instream. >
START:
%%OMRCount = 0
%%Counter = 0
<! If a one page document, set OMR marks and route to that output.>

DOCUMENT:
if %%TOTAL_PAGES = 1 then
%%OMRCount = %%OMRCount + 1 <! setup OMR mark and >
if %%OMRCount > 7 then <! write to first output >
%%OMRCount = 1

endif
<output> Output1

145EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

<! Document must have more than one page. So set the DataMatrix
barcode>

<! and route to the appropriate output. >
else
%%Counter = %%Counter + 1
%%Doc = JUSTIFY(%%Counter,R,5,0)
%%Barcode = SUBSTR(%%AcctNum,1,3) | SUBSTR(%%AcctNum,5,4) | %%Doc
%%ChkDigit = CHECKSUM(%%Barcode)
<output> Output2
endif
</content>

</rule>
<output>

<name> Output1 <! Identifiable name. >
<file> DD:OUTPUT1 <! Output file name. >
<add>

<addtype> OMR <! OMR mark for 1 page documents >
<addpart> 1 1 <! Mark used for Benchmarking >
<addpart> %%OMRCount 3 <! Variable set in rule for 3 bytes.>
<position> .5 6 in <! Placement of OMR marks. >

</add>
</output>
<output>

<name> Output2 <! Identifiable name. >
<file> DD:OUTPUT2 <! Output file name. >
<add>

<addtype> DataMatrix <! DataMatrix barcode for 2+ page
documents. >

<addpart> * <! Framing character >
<addpart> %%Barcode 12 L ' ' <! 12-bytes, left justified. >
<addpart> %%ChkDigit 1 L ' ' <! 1-byte check digit. >
<addpart> * <! Framing character >
<position> .5 10.5 0 0 IN <! Placement of DataMatrix barcode.>

<datamatrix> Y 1 <! Square barcode with minimal error
correction. >

<cellsize> 12 PELS <! Width and height of one cell. >
</add>

</output>

The following illustrates how to create a Code 3of9 barcode with framing characters (*) on each end.
The example barcode contains the current page number, the total number of pages, the customer
number, and the document number.

<ADDPART> * <! always include framing character>
<ADDPART> %%PAGE_NO 3 R 0 <! a system variable >
<ADDPART> %%TOTAL_PAGES 3 R 0 <! a system variable>
<ADDPART> %%customer 3 R 0 <! a user-defined field variable>
<ADDPART> %%SEQUENCE_NO 3 R 0 <! a system variable>
<ADDPART> * <! always include framing character>

146EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

You could achieve the same results by building a single variable in a PAGE: rule that contains all of
the necessary information, as shown next.

In the control file:

<ADDPART> %%barcode 14 R 0

In the PAGE: rule:

%%barcode = '*'| %%PAGE_NO | %%TOTAL_PAGES | %%customer | %%SEQ_NO | '*'

Note: Since page number is part of the barcode, the value of %%barcode must be set in a
PAGE: rule. Otherwise, you should set the value in a DOCUMENT: rule.

Adding Inserts

An insert is one or more pages of information to add to an existing document. These inserts become
part of the document, and Enrichment processes them like any other page. Enrichment assumes
that inserts contain printable information. Thus, they are included in document page counts.

A special type of insert, called an “insert record”, contains any number of data records to add to a
document. Normally, insert records are used to add printer control commands to create overlays,
change fonts, add barcodes, and so on. Enrichment assumes that insert records don’t contain pages
of information. Thus, they aren't included in document page counts.

Adding Inserts with Static File Names
Note: Use this method when you only have a limited number of inserts to append, when the
inserts have different <TYPE> values, or when the inserts require different AFP or Xerox print
resources. You must define each insert in a control file Insertpage group. If you need to select
from multiple possible inserts of the same type (and using the same print resources)
dynamically, we recommend that you define only one Insertpage group and set the file in the
rule file, shown below.

Do the following to append inserts whose file definition will not change:

1. Create the supplemental pages and save them.
2. Use Insertpage tag groups in the control file to identify any of these pages that might be used

while processing the application. Within each Insertpage group, specify a <FILE> tag that defines
the file to be associated with the Insertpage.

3. Use <APPEND> commands in the rule file to designate which insert pages to append and where
to append them. The order in which Enrichment executes the <APPEND> commands in the rule
file determines the order in which it assembles the insert pages.

The following diagram illustrates this process.

147EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

Note: If the insert uses COPYGROUP or PAGEFORMAT commands, all files set to the same
insert must use the same AFP resources or have fields in the same places.

Adding Inserts with Dynamic File Names
The following diagram illustrates appending an insert. Because the insert value is a variable,
Enrichment can specify the file name dynamically, which can greatly reduce the size of your rule file.

Do the following to append documents in this manner:

Note: If you are adding insert records, replace references to Insertpage and <INSERTPAGE>
in this process with Insertrec and <INSERTREC>.

1. Create the supplemental inserts and save them.

148EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

2. In the control file, use one set of Insertpage group tags to identify each type of insert you might
use while processing the application. The <INSERTPAGE> command indicates to Enrichment
how to process these documents, regardless of which document is actually being added.

3. Use the <INSERTPAGE> tag to specify the name of a variable, such as %%form, whose value
is the name of the file to add. The name should be unique for each <INSERTPAGE> tag.

4. Set the variable you specified in step 3 to the name of the insert file to add.
5. Use <APPEND> commands in the rule file to designate which inserts to add and where to add

them. The order in which Enrichment executes the <APPEND> commands in the rule file
determines the order in which it assembles the documents.

You can use this process to add documents to existing print streams or for document assembly, as
shown below.

Specifying the Number of Copies for Inserts
To add more than one copy of an insert to the document, follow the file specification with a comma
and the number of copies of the file that you want included. Therefore, on a mainframe system
DD:INPUT, 3 indicates that Enrichment will include three copies of the contents of DD:INPUT.

On a UNIX or Windows system, you would specify /documents/insurance/life, 2 to instruct
Enrichment to include two copies of the contents of /documents/insurance/life.

149EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

For example, assume a bankmails monthly statements to its customers who have a checking account.
The rule shown next would include two vouchers for free checks for all customers of retirement age
and add an enclosure notice in the regular statement.

DOCUMENT:
<append> %%statement
IF %%age >= %%retirement_age THEN

%%enclosure = 'Free check vouchers enclosed.'
%%IRA = 'DD:INPUT2, 2' // Set the name of the insert with 2 copies

<append> %%IRA
ELSE
%%enclosure = ''
%%IRA = ''

ENDIF

In this rule,%%statement,%%age, and%%retirement_age are defined by a supplemental data file
and all five variables are defined in the control file. Note that %%age is compared to
%%retirement_age, another variable. By keeping the%%retirement_age variable current, we ensure
that Enrichment always compares the customer age to the current retirement age without changing
the rule file.

Using Variable Substitution to Add Inserts
You can use variable substitution with inserts to achieve a variety of results. In this manner you can:

• Force specific pages to be front facing (in duplex printing, for example)
• Add new pages to a document (for marketing, for example)
• Add control information (such as DJDE commands)
• Add barcodes or OMR marks relative to a field
• Build customer document packages

Note: You can only use variable substitution to add inserts with insert templates defined in
Insertpage or Insertrec tag groups.

Do the following to use inserts to add supplemental information to your documents:

1. Create the supplemental inserts and save them.

Note: If the insert uses COPYGROUP or PAGEFORMAT commands, all files set to the
same insert must use the same AFP resources or have fields in the same places. Similarly,
if the insert uses DJDE records, all files set to the same insert must use the same Xerox
resources or have fields in the same places.

2. In the control file, use one set of Insertpage or Insertrec group tags (whichever is appropriate)
to identify each insert. The Insertpage or Insertrec group indicates how Enrichment should
process these inserts, regardless of which insert is actually being added. The <INSERTPAGE>
or <INSERTREC> tag maps a file that contains one or more pages or records to a field or variable
name. Specify on the appropriate tag the name of a variable, such as %%form, whose value is

150EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

the name of the file to add. The variable name should be unique for each <INSERTPAGE> or
<INSERTREC> tag.

3. Set the <PLACE> tag to BEFORE or AFTER to place the insert pages or records before or after
pages on which the variable is found. Set <PLACE> toWITHIN to place insert records on the
record after the one on which the Enrichment finds the variable.

4. Set the <SUBSTITUTE> tag to YES in the appropriate Insertpage or Insertrec groups.
5. Use the insert’s variable name within the print stream or within supplemental documents to

identify where to place the associated file.
6. Set the variable you defined in step 2 to the name of the insert file to add.

Enrichment removes the variable names themselves, such as%%RIDER, from the document when
it adds the insert.

Using Fields to Specify where to Add Inserts
You can add inserts to a document using field substitution. Field substitution allows you to add the
file information at any place in the document at which Enrichment finds a specified field. It behaves
exactly like variable substitution, except that the variable needn't be included within the text of the
input. The following diagram shows how this works.

151EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

Example

The following example inserts a record (the statement territory) into a field called %%Stmt_Terr, and
inserts a page after each document.

<input> <! Begin input tag group. >
<name> Input <! File name. >
<file> H:\INPUT1.LIN <! File location
<type> I A <! Impact with ANSI carriage cntrl>
<doc> T %%AcctNo CHANGE <! A change in the account number >

<! denotes the 1st page of a >
<! document. >

<field> %%AcctNo KA <! Account number is on line 13, >
<loc> 13 60 8 <! column 60, for a length of 8. >

</field>
<field> %%AmtDue K <! Amount due field starts on the >

<loc> 14 60 10 <! 14th print line in position 60 >
</field> <! for 10 characters. >
<field> %%Stmt_Terr K <! Placeholder for insertrec >

<loc> 1 1 1 R
</field>

</input>
<insertpage> %%Award F <! Customized insert for each document >

<file> H:\AWARD.LIN <! Location of insert >
<type> I A <! Impact with ANSI carriage cntrl >
<substitute> Y <! variable substitution >

</insertpage>
<insertrec> %%Stmt_Terr F <! Additional insert for each document >

152EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

<type> I A <! Impact with ANSI carriage cntrl >
<substitute> Y <! variable substitution >
<place> WITHIN <! place after each document >
<content>

Use this territory code with all correspondence: %%Territory
</content>

</insertrec>
<rule>

<content>
START:

%%Total_Due = 0
%%Total_Docs = 0

DOCUMENT:
%%Territory = SUBSTR(%%AcctNo,1,3) <! Set %%Territory >
%%Total_Docs = %%Total_Docs + 1 <! count invoices & >
%%Amt = FINDNUM(%%AmtDue,1,2,1,'$',',','.') <! convert field >

<! to numeric. >
%%Total_Due = %%Total_Due + %%Amt <! count amount due.>
<append> %%Award After

FINISH:
<! Format Total into dollar amount and add end banner. >
%%Total_Due = FORMAT(%%Total_Due,10,2,Y,0,R,'$',',','.')
<banner> Totals_Page After

</content>
</rule>
<output> <! Begin output file tag group.>

<name> Output <! File name. >
<file> H:\OUTPUT1.LIN <! File location. >

</output>

Inserting Records from an External File

To add records from an external file to a print stream, follow these steps.

1. Create a control file. For more information, see Developing a Control File on page 75.
2. Create an Insertrec tag group, specifying the variable that triggers the insertion of the record.

The record will be inserted on the page, before the page, or after the page where the variable
appears, depending on the value you specify in the <PLACE> tag (described below). For details
of the Insertpage tag group, refer to the Enrichment Language Reference Guide.

3. In the Insertrec tag group, create a <PLACE> tag to indicate if the insert should be placed within,
before, or after the page that contains the variable specified by the <INSERTREC> tag. For
example, if you want to insert the record after the page that contains the field %%Closing, you
would specify the following:

<INSERTREC> %%Closing
<PLACE>A

153EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

<!Additional Insertrec tag group tags would go here>
</INSERTREC>

4. Create a <FILE> tag in the Insertrec tag group to specify that file that contains the record you
want to insert. For more information, see the Enrichment Language Reference Guide.

Note: If the record that you want to insert is in the control file itself, create a Content tag
in the Insertrec tag group. For more information, see theEnrichment Language Reference
Guide.

5. In the Insertrec tag group, create a <TYPE> tag to specify the record's print stream type (AFPDS,
Impact, DJDE, etc.).

If the inserted record contains inline variables that you want to replace with values, create a
<SUBSTITUTE> tag in the Insertrec tag group. For example, if you needed to create the insert shown
below and you wanted to replace the text %%ZIP with the actual ZIP Code™, you would specify
<SUBSTITUTE>Y. You would also need to define a field called%%ZIP (using the <FIELD> tag) that
would contain the actual account number extracted from the print stream.

ZIP Code: %%ZIP

Example

The following example inserts a record that contains the account number.

<input> <! Begin input tag group. >
<name> Input <! File name. >
<file> DD:INPUT1 <! DD name in JCL. >
<type> I A <! Impact with ANSI carriage cntrl>
<doc> T %%AcctNo CHANGE <! A change in the account number >

<! denotes the 1st page of a >
<! document. >

<field> %%AcctNo KA <! Account number is on line 13, >
<loc> 13 60 8 <! column 60, for a length of 8. >

</field>
<field> %%AmtDue K <! Amount due field starts on the >

<loc> 14 60 10 <! 14th print line in position 60 >
</field> <! for 10 characters. >
<field> %%Stmt_Terr K <! placeholder for insertrec >

<loc> 1 1 1 R </field>
</input>
<insertrec> %%Stmt_Terr F <! Additional insert for each document >

<type> I A <! Impact with ANSI carriage cntrl >
<substitute> Y <! variable substitution >
<place> WITHIN <! place after each document >
<content>

Use this territory code with all correspondence: %%Territory
</content>

154EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

</insertrec>

<rule>
<content>
START:

%%Total_Due = 0
%%Total_Docs = 0

DOCUMENT:
%%Territory = SUBSTR(%%AcctNo,1,3) <! Set %%Territory >

%%Total_Docs = %%Total_Docs + 1 <! count invoices and >
%%Amt = FINDNUM(%%AmtDue,1,2,1,'$',',','.') <! convert field >

<! to numeric. >
%%Total_Due = %%Total_Due + %%Amt <! count amount due.>

FINISH:
<! Format Total into dollar amount and add end banner. >
%%Total_Due = FORMAT(%%Total_Due,10,2,Y,0,R,'$',',','.')

</content>
</rule>
<output> <! Begin output file tag group.>

<name> Output <! File name. >
<file> DD:OUTPUT1 <! DD name in JCL. >

</output>

Looking Up Records from a Table or File

You can use data from an external file or a table in the control file for a variety of purposes. For
example, you could add an account balance to a statement by looking up the balance in an external
file based on the account number on the statement.

To look up records from a table or file, follow these steps.

1. Create a control file. For more information, see Developing a Control File on page 75.
2. Determine if the records will be in an external file or if they will be embedded in the control file.

If they will be in an external file, continue to the next step. If they will be embedded in the control
file, create a Table tag group to contain the data that you want to look up. For more information
on the Table tag group, see the Enrichment Language Reference Guide.

3. In the control file, create a Rule tag group.
4. Determine which section of the Rule tag group the lookup should happen. This decision is based

on when during Enrichment processing the lookup needs to take place. The rule sections are
START, DOCUMENT, PRESORTED, PAGE, and FINISH. For more information, seeDeveloping
a Rule File on page 80.

5. In the appropriate rule section (START, DOCUMENT, PRESORTED, PAGE, or FINISH), create
the LOOKUP function to perform the lookup. For more information on the LOOKUP function,
see the Enrichment Language Reference Guide.

155EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

6. Write the appropriate rule section code to use the results from the lookup in the manner you
want.

Inserting Banner Pages

A banner page is a page that separates one document from another on a printer. They are sometimes
called separator pages. Banner pages are not considered part of any document in the print stream.
You can use Enrichment to add banner pages before or after your documents by adding a Banner
tag group in the control file to define the pages and using the <BANNER> command in your rules to
control the placement of the pages.

Note: The banner pages themselves are not created by Enrichment. They must be created
by another program in a format consistent with the print streams to which they are added.

To insert banner pages:

1. Create a control file. For more information, see Developing a Control File on page 75.
2. In the control file, create a Banner tag group to define the banner.
3. In the Banner tag group, create a <NAME> tag to define the name to be used when referring to

this banner in the control file.
4. In the Banner tag group, create a <FILE> tag to specify that file that contains the banner.

For more information about the <FILE> tag, see the Enrichment Language Reference Guide.

5. In the Banner tag group, create a <TYPE> tag to specify the banner's print stream type (such as
AFPDS, Impact, DJDE).

6. If the banner contains inline variables that you want to replace with values, create a
<SUBSTITUTE> tag in the Banner tag group.

For example, if you needed to create the banner shown below and you wanted to replace the
text %%State with the actual state, you would specify <SUBSTITUTE>Y. You would also need
to define a field called %%State (using the <FIELD> tag) that would contain the actual state
extracted from the print stream.

7. Because banner pages are not considered part of any other document, they normally are not
processed or included in page and document counts. You can control how Enrichment processes
banners by setting the Banner group <ALLOW> tag.

* *
* *
* *
* %%State *
* *
* *

156EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

* *

8. Create a Rule tag group in the control file.
9. Determine where you want to insert the banner page.

For example, you may want to insert a banner page whenever the state in the mailing address
changes.

10. Create the appropriate Rule logic to insert the banner at the place in the print stream where you
want it. To insert the banner use the <BANNER> print stream command. For more information
see the Enrichment Language Reference Guide.

Note: The <BANNER> print stream command is different from the Banner tag group.

Note: Always specify the <OUTPUT> command before the <BANNER> command in the
rules unless there is only one Output tag group.

The following is an example Rule that inserts a banner whenever the state changes.

<rule>
<content>

PRESORTED:
if CHANGED(%%State) then
<banner> StateCover BEFORE

endif
</content>

</rule>

Example

The following example inserts a banner page. The banner page contains a variable for the department
which is filled in with the appropriate department name extracted from the document.

<input>
<name> INPUT <! Identifiable name. >
<file> DD:INPUT <! Input file name. >
<type> AFPL A <! AFP Line data with ASCII carriage controls.>
<doc> T %%AcctNum CHANGE <! New document when Account >

<! number changes. >
<field> %%AcctNum KA <! Find account number. Must >
<ref> ' ' 'Account Number:' 44 <! reference because address >
<loc> 0 2 8 <! is not always on same line >

</field>
<field> %%Dept K <! Find department on line 3, >
<loc> 3 9 3 <! column 9, length 3 on first>

</field> <! page of each document. >

157EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

</input>
<rule>

<content>
PRESORTED:
<! Write a banner page each time the department changes. Set >
<! the name of output file to include the sequential number. >
if CHANGED(%%Dept) then

<banner> DEPTCover BEFORE
%%DSN = "'D966DZB.HANDSON.NEW" | DATE(J) | ".DPT" | %%Dept | "'"

<filebreak>
endif
<output> Output1
</content>

</rule>
<banner>

<name> DEPTCover
<type> I A
<content>1

Department %%Dept
</content>
<substitute> YES

</banner>
<output>

<name> Output1 <! Identifiable name. >
<dynafile> %%DSN
<allocate> SYSDA 1 1 TRKS VB 8204 27998
<filemax> M
<presort> <! Perform system sort. >

<pretype> NONE <! Not LPC or Group1, but other. >
<file> DD:INPUTA <! Indexed sort key file for processing.>
<sortpart> %%DOCINDEX 8 L ' ' <! Document index system variable>
<sortpart> %%Dept 3 L ' ' <! Department >
<sortpart> %%TOTAL_PAGES 3 R 0 <! Total pages system variable >
<sortpart> %%AcctNum 8 L ' ' <! Account number >

<step> SORT 0 ' SORT FIELDS=(9,3,A,12,3,A,15,8,A),FORMAT=BI,EQUALS
OPTION SORTIN=INPUTA,SORTOUT=OUTA'

<outfile1> DD:OUTA 22 <! Sorted output file. >
<indexcol> 1 <! Document index in column 1. >

</presort>
</output>

Sorting, Outsorting, and Output

When you sort documents in an input, you change the order of the documents within the input before
they are processed by the rules in your rule file. To sort, use the Sortmatch tag group in your control
file to identify one or more input print streams to sort. The Sortmatch tag group begins with the

158EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

<SORTMATCH> tag and ends with the </SORTMATCH> tag. Neither tag has parameters, and a control
file can contain only one Sortmatch group.

For example, the following example shows coding in which Enrichment will sort documents within
the print stream named Statements first by branch office (%%branch) and then by customer number
(%%customer). The resulting output contains documents sorted in descending order by branch office.
Within each branch office grouping, Enrichment sorts documents in ascending order by customer
number.

<SORTMATCH>
<INPUTNAME> Statements
<SORT> %%branch D
<SORT> %%customer A
</SORTMATCH>

In this example, the Sortmatch tag group contains these tags:

• <INPUTNAME> identifies an input to sort. You can specify as many <INPUTNAME> tags as there
are Input groups in the control file. For more information, see the Enrichment Language Reference
Guide.

Note: Enrichment sorts documents before it processes the rule file, so you can only use variables
extracted from the document or associated system variables as sort criteria. If you need to use
other data, use the Presort tag group to sort outputs.

• <SORT> identifies a field or system variable by which to sort documents within each input and
specifies the resulting sort order. You can specify as many <SORT> tags as necessary. For more
information, see the Enrichment Language Reference Guide.

Outsorting carries sorting a step further by separating documents from an input and assigning them
to a specific output print stream based on field or system variable values. When outsorting to multiple
output files, use an Output tag group to define each output file and then use <OUTPUT> commands
in a rule file to direct specific documents to specific outputs.

The methods commonly used to sort and outsort output are described below.

Using %%TOTAL_PAGES to Assign Output

The %%TOTAL_PAGES system variable’s value is the total number of logical front pages in a
document. You can use %%TOTAL_PAGES in a rule to control which output Enrichment writes a
document to based on page count. For example, to send all one-page documents to one output,
multi-page documents of 10 pages or less to a second output, and multi-page documents of greater
than 10 pages to a third output, you might specify rules as shown below.

IF %%TOTAL_PAGES = 1 THEN
<OUTPUT> ONEPAGE

ELSEIF %%TOTAL_PAGES > 10 THEN

159EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

<OUTPUT> LARGEOUT
ELSE

<OUTPUT> MIDOUT
ENDIF

Using <OUTPUT> Commands in the Rule File

You can use the rule file to control the output to which Enrichment will write documents. Specify
outputs in the rule file as <OUTPUT>name, where name references an Output group <NAME> tag
value in the control file.

You can set <OUTPUT>NONE in a rule file to discard documents (that is, to specify that Enrichment
does not write the document to any output). To write a document to multiple outputs, set multiple
<OUTPUT> commands in the rule file.

You can also place multiple copies of a document in a single output by setting multiple <OUTPUT>
commands to the same name value in the rule.

For example, the rules in the code below indicate that branch representatives will receive copies of
statements only for accounts with balances in excess of $20,000. Enrichment will not print statements
for accounts with balances of less than $20,000. The rules further separate outputs by using the
value of %%Branch_ID to identify which of two branches will receive the statements.

DOCUMENT:
IF %%Acct_Balance >= 20000 THEN
IF %%Branch_ID = AAA THEN

<OUTPUT> BranchAAA
ELSEIF %%Branch_ID = BBB THEN

<OUTPUT> BranchBBB
ENDIF
ELSE

<OUTPUT> NONE
ENDIF

Sorting Documents Within a Single Input

Do the following to sort documents within a single input print stream:

1. Use the Input group <DOCUMENT> tag to define the start of each document within the input file.
2. Use a Field tag group within the Input group to define a field for each non-system variable criterion

by which you want to sort.
3. Define a Sortmatch tag group.

160EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

In the <INPUTNAME> tag, specify the name of the Input group that defines the print stream
to sort. Since the <INPUTNAME> tag default is to sort the named file and print it in output,
you do not need to specify values for the match and print parameters.

a.

b. Define one <SORT> tag for each sort criterion, in the order in which you want the sorts
performed. For each <SORT> tag, specify the name of a field or system variable by which
Enrichment will sort the documents and the order (ASCEND or DESCEND) in which you
want the documents placed. If you want the documents placed in ascending order, the
Enrichment default, you need only specify the field or system variable name in the <SORT>
tag.

Sorting an Output Using the Mainframe System Sort

You can use system sort to sort documents going to an output by any field. To invoke system sort,
include the Presort tag group with a single <STEP> tag that calls the system sort program. For
example, when a print stream is to be distributed to both individual agents and individual branches,
you can sort the first output by agent and sort the second output by branch. The following shows the
Output tag groups that define two outputs, one sorted by agent and one sorted by branch.

Note: This is not a postal presort so no postal presort program, such Mailstream Plus, is
necessary. This application uses the mainframe system sort but you could use almost any
sort program.

<output> <! Output sorted by Agent #. >
<name> Output1
<file> DD:OUTPUT1
<presort> <! Presort tag to sort output.>

<pretype> NONE <! Use any presort type. >
<file> DD:INPUTA
<sortpart> %%DOCINDEX 9 L ' ' <! Enrichment sort index # >
<sortpart> %%AgentNum 7 R 0 <! By Agent # fd using MVS >

<! sort utility. >
<step> SORT 0 ' SORT FIELDS=(10,7,BI,A),EQUALS

OPTION SORTIN=INPUTA,SORTOUT=OUTA'
<outfile1> DD:OUTA 16 <! Output sorted by Agent # >
<indexcol> 1 8

</presort>
</output>
<output> <! Output sorted by Branch #.>
<name> Output2
<file> DD:OUTPUT2
<presort> <! Presort tag to sort output>

<pretype> NONE
<file> DD:INPUTB
<sortpart> %%DOCINDEX 9 L ' ' <! Enrichment sort index #. >
<sortpart> %%BranchNum 5 R 0 <! By Branch # fd using MVS >

<! sort utility. >

161EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

<step> SORT 0 ' SORT FIELDS=(10,5,BI,D),EQUALS
OPTION SORTIN=INPUTB,SORTOUT=OUTB'

<outfile1> DD:OUTB 14 <! Output sorted by Branch # >
<indexcol> 1 8

</presort>
</output>

You can also substitute a user-defined sort program for system sort on the <STEP> tag.

Sorting a Print Stream Based on the Order of Another File

The return value for the LOOKUP and LOOKUPV functions is the number of the record in the internal
table that contained the specified string. You can use this value as the basis for sorting a print stream
into the order of an external file.

For example, if you create a customer file in the order in which customer statements are to be
produced, you could use the code shown below to sort the statements.

<INPUT>
<FIELD>%%CustNo K <! Pick up customer number.
>
.
.
.
</FIELD>
.
.
.

</INPUT>
<RULE>

<CONTENT>
DOCUMENT:

<! LOOKUP the customer number in the customer file
>

LOOKUP('DD:CUSTOMER',%%CustNo,1,10)
IF %%RC THEN <! Record not found.

>
%%ORDERNO = 0

ELSE
%%ORDERNO = %%RV

ENDIF
</CONTENT>

</RULE>
<OUTPUT>
.
.
.
<PRESORT> <! Sort by %%ORDERNO.

>

162EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

.

.

.
</OUTPUT>

Splitting Output Print Streams Into Multiple Files

An output is associated with a single print stream. This print stream can be written into one or more
files. Typically, a single file is used and the name to be created is identified with a single Output
group <FILE> tag. However, it may be convenient to break an output into multiple files. Often this
is done to ensure that each file to be processed has a maximum number of documents or pages.
File breaks may also be performed to separate logical units of information (such as file breaks
associated with postal tray breaks).

There are two methods for performing convenience breaks:

Automatic breaking based on size

Automatic file breaking is defined by specifying the <FILEMAX> tag in the Output group. When you
specify <FILEMAX> in an output, you will also need to identify each of the files to be created. This
can be done with multiple <FILE> tags as shown below, or you can use the <DYNAFILE> tag.

<OUTPUT>
<FILE> DD:Out1
<FILE> DD:Out2
<FILE> DD:Out3
<FILEMAX> 1000 D

</OUTPUT>

The coding shown above results in the placement of documents 1 through 1,000 in Out1; 1,001
through 2,000 in Out2; and 2,001 through 3,000 in Out3. If there are more than 3,000 documents,
they are included in Out3 since there are only three files defined.

Conditional breaking from the rules

You can use the <FILEBREAK> command to manually control file breaks in the rules. When
Enrichment encounters a <FILEBREAK> command in the rules, it does one of the following:

• If you are using dynamic file allocation, Enrichment allocates a new file according to the definition
you set up in the Output group <DYNAFILE> and <ALLOCATE> tags; or

• If you are not using dynamic file allocation, Enrichment moves to the next file specified in multiple
<FILE> tags.

Note: Unless there is only one output, you must define the output before you use the
<FILEBREAK> command.

163EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

For outputs which are presorted, the <FILEBREAK> command must be in the PRESORTED: section
of the rules. <FILEBREAK> commands in the DOCUMENT: section are ignored.

The <FILEBREAK> command causes a file break to occur in the current output. The file break will
occur prior to the current document, so that the current document is the first document in the newly
allocated file.

You should specify only one file break for each document being processed. If Enrichment encounters
multiple <FILEBREAK> commands, it ignores all but the last.

The code shown below will cause a file break to occur each time the branch office changes
(%%branchoffice is a field variable). In this case, we are allocating the new file dynamically.

In the control file:

<OUTPUT>
<NAME> Output
<DYNAFILE> %%fn
<ALLOCATE> SYSDA 100

</OUTPUT>

In the rules:

DOCUMENT:
<OUTPUT> Output
IF CHANGED(%%branchoffice) THEN

%%fn = 'DDZ4.' | %%branchoffice // Define the file name
<FILEBREAK> // Break the current output

ENDIF

You can use both automatic and conditional file breaking for the same output. If you use both, the
<FILEMAX> tag size parameter acts as the default size of the files. You can cause a “premature”
break by specifying <FILEBREAK>.

For example, the code shown below specifies a maximum size of 1,000 documents, except that the
file is also broken when a new branch office occurs.

In the control file:

<OUTPUT>
<NAME> Output
<FILE> DD:File1
M
<FILE> DD:File10
<FILEMAX> 1000 D

</OUTPUT>

164EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

In the rules:

DOCUMENT:
<OUTPUT> Output
IF CHANGED(%%branchoffice) THEN

<FILEBREAK> // Break the current output
ENDIF

Static vs Dynamic File Allocation
When you want to associate multiple files with a single output, you can use one of two methods to
specify the files:

• Use multiple <FILE> tags to specify the files to be created

The easiest way to specify multiple files is to use multiple <FILE> tags. Enrichment will initially
write the print stream to the file associated with the first <FILE> tag. When a file break occurs for
the output, Enrichment creates the file associated with the next <FILE> tag.

• Use dynamic file allocation

When you use multiple <FILE> tags, you must pre-name and pre-allocate each of the output files.
This may be inconvenient or unfeasible. Dynamic file allocation allows you to define the name of
the file to be created when a file break occurs.

In dynamic file allocation, the name of the file is assigned by the Output group <DYNAFILE> tag
and the parameters necessary to set up the sequential data set are specified by the <ALLOCATE>
tag.

Note: The <ALLOCATE> tag is valid only with Enrichment on mainframe systems. You can't
use dynamic file allocation to create files on tape.

Example of Splitting Output Print Streams into Multiple Files
For example, if you wanted to split the documents in the input file into two files, one for documents
whose page count is more than three pages (output named MORE3PAGE) and one for documents
whose page count is three pages or less (output named 3ORLESSPAGE), you would create the
following control file.

<input>
<name> Sortout <! Identifiable name. >
<file> DD:INPUT1 <! Input file. >
<type> AFPL A <! File is AFP line data. >
<document> TOP %%Customer_Number CHANGE <! First page of a doc. >
<field> %%Customer_Number KA <! Find the customer number. >

<location> 15 60 10 <! Print line 15, column 60 >
</field> <! for 10 bytes. >

</input>

165EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

<rule>
<content>
DOCUMENT:
if %%TOTAL_PAGES > 3 then

<output> MORE3PAGE
else

<output> 3ORLESSPAGE
endif
</content>

</rule>

<output> <! Output for 3 or fewer pgs. >
<name> 3ORLESSPAGE <! Identifiable name >
<file> DD:OUTPUT1 <! File name >

</output>
<output> <! Output for 3 and up pages. >

<name> MORE3PAGE <! Identifiable name >
<file> DD:OUTPUT2 <! File name >

</output>

Consolidating Documents

When we sort documents, we place documents in ascending or descending order based on the value
of a field. In matching, we consolidate documents that have the same destination so that they can
be processed as a package.

To consolidate documents, you use the Sortmatch tag group to sort—and match—documents within
multiple inputs. The process for sorting documents within multiple inputs is essentially the same as
for a single input.

Note: When multiple inputs are sorted and not matched, they are commingled in the output
in sort order. Each input document is treated as a separate document in the output.

Specify a Sortmatch group <INPUTNAME> tag for each Input group that defines a print stream to
sort. If any of the inputs are already in the desired sort order, you can increase processing efficiency
by setting the Input group <SORTED> tag to YES so Enrichment will not re-sort the input.

After you define all of the necessary <INPUTNAME> tags, define one <SORT> tag for each sort
criterion, in the order in which Enrichment should perform the sorts. Note that you must sort all input
streams by the same criteria if you sort them in the same run of Enrichment.

The tagging shown below will cause Enrichment to sort the print streams Statements and Invoices
with a primary key of branch office (%%branch) and a secondary key of customer number
(%%customer). The resulting output contains all documents from the inputs Statements and Invoices
sorted in descending order by branch office. Within each branch office grouping, documents are
sorted in ascending order by customer number.

166EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

Note: Since sorting and matching takes place before rule file processing, you cannot set
variables in the rule file for use with Enrichment internal sort. You can use these variables in
external sorts called during output processing.

<SORTMATCH>
<INPUTNAME> Statements
<INPUTNAME> Invoices
<SORT> %%branch D
<SORT> %%customer A

</SORTMATCH>

If you do not want the contents of a particular input to print (for example, if you want to extract data
from a matching document without printing that input), set the <INPUTNAME> tag match parameter
to YES and set the print parameter to NO.

The diagram below illustrates document consolidation. In the illustration, two input print streams,
LETTER and STATEMENT, are matched so that documents from each input are consolidated and
sorted by field. The order of the <INPUTNAME> tags indicates the order of pages in the consolidated
documents—documents from LETTER are page 1 of the consolidated documents and documents
from STATEMENT are page 2. Documents B and D from LETTER and documents E and F from
STATEMENT aren't consolidated with other documents (because they’re not in both inputs), but are
sorted into the output.

Using <INPUTNAME> Tag for Consolidation
The <INPUTNAME> tag has a required name parameter, which identifies the input print stream whose
documents are to be sorted, and two optional parameters, whose functions are as follows:

• The match parameter specifies if documents in an input will be sorted or matched then sorted, or
if the entire input will be included in every output package. You can set the match parameter to
ALWAYS (every package includes the entire input), SORT (sort the documents in the input by the

167EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

fields named in <SORT> tags), or MATCH (sort then match the documents by the fields named in
<SORT> tags).

• The printYN parameter specifies whether to include the input in output. You can set the printYN
parameter to YES or NO. Normally, you would set print to NO if a document is used only to obtain
data and should not be included in a final package.

Note: You cannot set printYN to NO unless you are matching more than one input and you
have set the printYN parameter for at least one <INPUTNAME> tag to YES.

When you consolidate documents from several streams, Enrichment groups the individual documents
from each stream together so they can be put into the same envelope.

Note: Consolidation requires that the print streams be sorted by the match keys. If any of the
print streams are already in the required sort order, you can improve performance by setting
the Input group <SORTED> tag to YES for those inputs.

To consolidate multiple streams, use the Sortmatch tag group to identify which streams to consolidate
and how to consolidate them. Specify the input streams using Input group tags.

The following code shows how three input streams would be combined and consolidated based on
a common customer number. (You must extract the customer number from each document as a
field variable and you must name the variable the same—in our example
%%CUSTOMER_NUMBER—in all three cases).

Note: When you consolidate documents, the combined package is treated as a single
document for counting, barcoding, and sorting.

<SORTMATCH>
<INPUTNAME> STREAM1 MATCH YES
<INPUTNAME> STREAM2 MATCH YES
<INPUTNAME> STREAM3 MATCH YES
<SORT> %%customer_NUMBER ASCEND

</SORTMATCH>

In the example above, each customer would receive one package containing their documents from
each stream in which the customer’s number was found.

Enrichment will sort all inputs in ascending customer number order into a single stream. If there are
documents from two or more sets that have matching values for %%CUSTOMER_NUMBER,
Enrichment combines them into a single document in the order in which you specified them in the
Sortmatch tag group. Since Enrichment assumes that matched documents go in the same envelope,
it counts pages as if the combined entity is a single document. If you need to change barcodes or
renumber pages, use Enrichment system variables.

You may need to remove existing barcodes and page numbers from the streams and re-barcode
the new combined document. The page numbers and sequence numbers in the original package
will be incorrect.

168EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

Knowing which Documents were Consolidated
It is often useful to know which print streams were included in a specific output document. There are
two methods for determining which print streams are in an output document:

• Using the %%INPUT system variable
• Using the FOUND function on unique variables for each print stream

%%INPUT System Variable

The%%INPUT system variable contains a blank-delimited list of all inputs used to create the current
document. So, in the code below %%INPUT would have these values.

Table 12: Example Values for %%Input

Inputs Used to Create Document SetDocument Set

"LETTER STATEMENT"A

"LETTER"B

"LETTER STATEMENT"C

"LETTER"D

"STATEMENT"E

"STATEMENT"F

You can use the WORDPOS function to determine if a specific input is included in the list. For
example, the code shown below will add a cover letter to those documents which include a statement.

DOCUMENT:
IF WORDPOS("STATEMENT",%%INPUT) THEN

<APPEND> CoverLetter B
ENDIF

FOUND Function

The FOUND function identifies whether a specified field was found, or included, in the current
document. So, you can use this function to see if unique fields on each input are included in the
current output—and thus if the input is included. However, if the field is not found in the document,

169EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

it doesn't necessarily mean the input isn't present. It could mean the input is present, though the field
is not.

Similarly, just checking to see of the field is non-blank can have inconsistent results. The field is reset
to blank before each document in which the input is included. If the input isn't included in the current
document, the field retains the value from the last document in which the input was included. So it
isn't always an accurate indicator of whether an input is present or not.

If you want to check to see what inputs made up the document, use the%%INPUT system variable
and theWORDPOS function. This is the only truly accurate way to determine what inputs are included
in each document.

Consolidating Print Streams
To consolidate print streams, follow these steps.

1. Create a control file. For more information, see Developing a Control File on page 75.
2. Create an Input tag group for each input print stream.
3. In the Input tag group, create a <FIELD> tag to define the field that you want to use as the sort

key.
4. Create an Output tag group to define each file that you want to commingle the input into. For

example, if you wanted to commingle two input print streams into one file you would create one
Output tag groups to define the characteristics of the output file. For information on the Output
tag group, refer to the Enrichment Language Reference Guide.

5. Create a Sortmatch tag group.
6. In the Sortmatch tag group, create an <INPUTNAME> tag for each input print stream that you

want to commingle. For example:

<SORTMATCH>
<INPUTNAME> MONTHLYSTATEMENTS
<INPUTNAME> YEARENDSTATEMENTS
</SORTMATCH>

7. In the Sortmatch tag group, create a <SORT> tag to define the field that you want to use as the
sort key. For example, if you want to sort based on the %%AcctNum field, you would enter:

<SORTMATCH>
<INPUTNAME> MONTHLYSTATEMENTS
<INPUTNAME> YEARENDTAXSTATEMENT
<SORT> %%AcctNum
</SORTMATCH>

Example

The following example includes several different pieces of customer correspondence from a number
of inputs in the same envelope to the customer. The example control file reads three print streams
that contain multiple documents of varying page count, sorts andmatches the documents by customer
identification number, and adds a cover letter that includes the customer’s address to each document

170EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

package. Since every customer will not get every piece of correspondence, we should list the contents
of the package in the cover letter. If a document package doesn't include the first input (a provider
letter from which we’ll extract the customer’s address), Enrichment outsorts it to a separate output.

<input> <! Begin input tag group, 1st input. >
<name> PL <! Name of file. >
<file> DD:INPUT1 <! DD name in JCL. >
<type> AFPL A <! Linedata w/ ANSI carriage control.>
<copygroup> F2LDATA0 <! Copygroup for standard output. >
<pageformat> P2LINE35 <! Pageformat for standard output. >
<doc> T %%ID_number C <! Change in ID number field denotes >

<! new document. >
<field> %%ID_number KA <! ID number field, referenced by >

<reference> ' ' 'Number:' 17 <! literal in column 17. >
<location> 0 3 10 <! Actual data is 3 positions to >

</field> <! right of the : and is 10 bytes.>
<field> %%PL_Addr1 K <! The following 3 fields are the >

<loc> 10 2 40 <! address found on page 1 of the >
</field> <! document. They are on lines >
<field> %%PL_Addr2 K <! 10, 11, and 12, beginning in >

<loc> 11 2 40 <! the 2nd position for 40 chars. >
</field> <! These fields are used in the >
<field> %%PL_Addr3 K <! cover letter. >

<loc> 12 2 40
</field>

</input>
<input> <! Begin input tag group, 2nd input. >

<name> PR <! Name of file. >
<file> DD:INPUT2 <! DD name in JCL. >
<type> AFPL A <! Linedata w/ ANSI carriage control.>
<copygroup> F2LDATA0 <! Copygroup for standard output. >
<pageformat> P2LINE35 <! Pageformat for standard output. >
<doc> T %%ID_number C <! Change in id number field denotes >

<! new document. >
<field> %%ID_number KA <! ID number field on line 9, column >

<location> 9 26 10 <! 26, for a length of 10. >
</field>

</input>
<input> <! Begin input tag group, 3rd input. >

<name> BenS <! Name of file. >
<file> DD:INPUT3 <! DD name in JCL. >
<type> AFPL A <! Linedata w/ ANSI carriage control.>
<copygroup> F2LDATA0 <! Copygroup for standard output. >
<pageformat> P2LINE35 <! Pageformat for standard output. >
<doc> T %%ID_number C <! Change in ID number field denotes >

<! new document. >
<field> %%ID_number KA <! ID number field on line 5, column >

<loc> 5 26 10 <! 26, for a length of 10. >
</field>

</input>
<input> <! Begin input tag group, cover page.>

<name> CoverLetter <! Name of file. >
<file> DD:INPUT4 <! DD name in JCL. >

171EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

<type> AFPL A <! Line data w/ANSI carriage control.>
<copygroup> F2COVLT0 <! Copygroup for cover letter. >
<pageformat> P2COVER5 <! Pageformat for cover letter. >
<doc> * <! Only one document. >
<substitute> YES <! Substitute variable names in the >

<! cover letter with values from >
<! the control or rule file. >

</input>
<sortmatch> <! Begin sortmatch tag group. >

<inputname> CoverLetter A Y <! Cover letter always included. >
<inputname> PL M Y <! Other files are included only >
<inputname> PR M Y <! if they match. >
<inputname> BenS M Y
<sort> %%ID_number A <! Sorted and matched on ID number in>

<! in ascending order. >
</sortmatch>
<rule> <! Begin rule file. >

<content> <! Content tag allows rules >
DOCUMENT: <! in the control file. >
if WORDPOS('PL',%%INPUT) then <! This block of code checks >

%%PL = 'Provider Letter' <! for the existence of the>
%%ADDR1 = %%PL_Addr1 <! Provider Letter to list >
%%ADDR2 = %%PL_Addr2 <! in the cover letter. >
%%ADDR3 = %%PL_Addr3
<output> Output <! Set the output file. >

else
%%PL = ' '
%%ADDR1 = '*******************'
%%ADDR2 = '* ADDRESS UNKNOWN *'
%%ADDR3 = '*******************'
<output> NoAddress <! Set the output file. >

endif
if WORDPOS('PR',%%INPUT) then <! This block of code checks >

%%PBR = 'Plan Book Revisions' <! for the existence of the>
else <! Plan Book input and adds>

%%PBR = ' ' <! it to the cover letter. >
endif
if WORDPOS('BenS',%%INPUT) then <! This block of code checks >

%%BS = 'Benefits Summary' <! for the existence of the>
else <! Benefit input and adds >

%%BS = ' ' <! it to the cover letter. >
endif

</content>
</rule>
<output> <! Begin output tag group. >

<name> Output <! Name of file. >
<file> DD:OUTPUT1 <! DD name in JCL. >

</output>
<output> <! Begin output tag group. >

<name> NoAddress <! Name of file. >

172EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

<file> DD:OUTPUT2 <! DD name in JCL. >
</output>

Reordering Pages within each Document

To reorder pages within each document, follow these steps.

1. Create a control file. For more information, see Developing a Control File on page 75.
2. Create an Input tag group for each input print stream.
3. In the Input tag group, create a <REORDER> tag. This allows you to reverse the order of pages,

move the first page of the document so it becomes the last, move the last page of the document
so that it becomes the first, or reorder pages for 2-up duplex printing.

Naming Output Files Dynamically

You can dynamically name your output files by following these steps.

1. Create a control file. For more information, see Developing a Control File on page 75.
2. Create an Output tag group for each output that you want to create.
3. In the Output tag group, create a <NAME> tag to designate the name that you want to use when

referring to this output in the control file.
4. In the Output tag group, create a <DYNAFILE> tag. This tag allows you to use a variable name

for the output. For complete information on using the <DYNAFILE> tag, refer to the Enrichment
Language Reference Guide.

Example
The example control file (shown below) reads a print stream and uses information from a lookup file
to add the appropriate department number to each document. Account numbers not found in the
lookup file are written to a report file. Documents are then written to separate output files based on
the department number.

<input>
<name> INPUT <! Identifiable name. >
<file> H:\INPUT.AFP <! Input file name. >
<type> AFPL A <! AFP Line data with ASCII carriage controls.>
<doc> T %%AcctNum CHANGE <! New document when Account >

<! number changes. >
<field> %%AcctNum KA
<loc> 13 60 8 <! Get 8-byte account number. >

</field>
<field> %%Dept R <! Replace the first occurrence >

173EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

<loc> 5 67 3 <! on line 5, column 67 for 3 >
</field> <! bytes. >

<input>
<rule>
<content>
DOCUMENT:
<! Build key for file lookup. >
<! The account number on the file does not include >
<! the dash as it does on the document. >
%%Key = SUBSTR(%%AcctNum,1,3) | SUBSTR(%%AcctNum,5,4)
<! File lookup for department number. >
<! If the account number is not in the file >
<! a record is written to a sequential file. >
%%Record = LOOKUP('H:\LUFILE.TXT',%%Key,1,7,Y)
if %%RC = 0 then
%%Dept = JUSTIFY(SUBSTR(%%Record,8,3),L,3,' ')

else
%%Dept = ' '
%%DocNo = JUSTIFY(%%DOCUMENT_NO,R,5,0)
%%ErrorRecord = %%AcctNum | %%DocNo
%%err = WRITE('H:\LUERROR.TXT',%%ErrorRecord,VB,8204)

endif PRESORTED:
<! Set the name of output file to include the department number. >

if CHANGED(%%Dept) then
%%FN = "DEPT" | %%Dept | ".AFP"
<filebreak>

endif
<output> Output1
</content>

</rule>
<output>

<name> Output1 <! Identifiable name. >
<dynafile> %%FN
<filemax> M
<presort>

<pretype> NONE <! Not LPC or Group1, but other. >
<file> H:\INPUTA <! Indexed sort key file for processing.>
<sortpart> %%DOCINDEX 9 L ' ' <! Document index system variable>
<sortpart> %%Dept 3 L ' ' <! Department number >
<sortpart> %%AcctNum 8 L ' ' <! Account number >
<step> SORT 0 ' SORT FIELDS=(10,3,A,13,8,A),FORMAT=BI,EQUALS

OPTION SORTIN=INPUTA,SORTOUT=OUTA'
<outfile1> H:\OUTA.AFP 20 <! Sorted output file. >
<indexcol> 1 <! Document index in column 1. >

</presort>
</output>

174EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

Adding a Document to All Documents

If you want to add a particular document to all your other documents, you can use the Sortmatch tag
group in the control file to do so. The place at which the document is added is controlled by the order
that documents are specified in the Sortmatch group. No rule file is required.

Do the following to add a constant document to all documents:

1. Create the supplemental documents and save them.
2. Use Input tag groups to define the documents.
3. Use the Sortmatch tag group to specify the documents to add.

Example
For example, to add a cover letter to a customer package (built by consolidating STREAM1,
STREAM2, and STREAM3), include the cover letter within the Sortmatch tag group. Set the cover
letter up as an input. The Sortmatch tag group in the control file would be as shown below.

<SORTMATCH>
<INPUTNAME> COVERLETTER ALWAYS YES
<INPUTNAME> STREAM1 MATCH YES
<INPUTNAME> STREAM2 MATCH YES
<INPUTNAME> STREAM3 MATCH YES
<SORT> %%customer_NUMBER ASCEND

</SORTMATCH>

In the example below, each customer would get a cover letter, their statement, and a marketing
piece.

<SORTMATCH>
<INPUTNAME> coverletter ALWAYS <! Always included

>
<INPUTNAME> statement MATCH <! Each individual statement>

<INPUTNAME> marketing ALWAYS <! Always included
>
</SORTMATCH>

Duplex Output

To create duplex output, follow these steps.

1. Create a control file. For more information, see Developing a Control File on page 75.
2. If the input is already duplex, specify the <DUPLEX> tag in the Input tag group.

175EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

3. Create an Output tag group for each output file that you want to create.
4. Specify the <DUPLEX> tag in the Output tag group.

For more information see the Enrichment Language Reference Guide.

Example

// Sample control file to output a 2-UP printstream
// input is in line and consists of 2 pages per document
// MUP is done on output and pages are placed horizontally
<input>

<content>
1 Document 1 Page 1

more of page 1
1 Document 1 Page 2

more of page 2
1 Document 2 Page 1

more of page 1
1 Document 2 Page 2

more of page 2
</content>
<name> INPUT
<type>I A
<doc> T %%TOPOFDOC C
<field> %%TOPOFDOC

<REF> '1' 'Document '
<loc> 0 1 2

</field>
<pagesize> 8.5 11 IN

<mup>
<mgrid> 1 1 R C
<msize> 40 66 8.5 11 IN

</mup>
</input>

<output>
<name> OUTPUT
<file> F:\OUTPUT.LIN
<mup>

<mgrid> 2 1 R C
<msize> 40 66 8.5 11 IN

</mup>
</output>

Multiple-Up Printing

Enrichment converts multiple-up input documents to single-up documents internally in order to count
pages, reorder pages, or reorder documents. This conversion occurs before fields, pages, or

176EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

documents are found. Therefore, you should define all fields with the assumption that all logical
pages have been moved to the upper left logical page. To see this translation, simply specify a
multiple-up input and a single-up output in your application.

Enrichment can also process multiple-up formats as large single-up pages without converting to
individual single-up pages. This technique is efficient, but can be used only if no page counting or
reordering of the logical pages is required (for example, in a 2-up page format where each document
is one logical page). To do this, process the input as single-up and pick up fields from both the right
and left sides of the page. A rule file can process both sides at once.

To create multiple-up output, follow these steps.

1. Create a control file. For more information, see Developing a Control File on page 75.
2. In the Input and/or Output tag group create an Mup tag group. The Mup tag group identifies

parameters for processing multiple-up inputs and outputs. Each Input and Output tag group can
contain one Mup group. For more information see the Enrichment Language Reference Guide.

Note: The Mup tag group is not valid for Metacode print streams.

FORMDEFs and N-Up Processing
AFP printing allows the print software to perform multiple-up processing by setting up two or three
partitions (or logical pages) on the real physical page. These partitions act as physical pages so that
a page-eject control (in AFP line data or AFPDS) simply moves printing to the next partition. IBM
refers to this process as N-Up processing. N-Up processing requires changes to the FORMDEF
resource to establish the partitions. You can only specify two or three partitions on each side of a
physical page and each partition must be of equal size. Enrichment processes this type of data as
single-up because the data is single-up—the print resources perform the multiple-up processing.

An extension to N-Up processing extends the partition concept so that partitions can vary in different
size and there can be a different number of partitions on the front and back of a duplex page. This
capability is limited to particular printers that have an enhanced hardware controller. IBM refers to
this type of processing as Enhanced N-Up or power-positioning. Enrichment processes Enhanced
N-Up as single-up since the data is single-up. You can use insert records controlled by PAGE: rules
to add data to a new partition (such as an off-page barcode partition).

Extracting Information from a Print Stream

To extract information from a print stream and create a flat file, follow these steps.

1. Create a control file. For more information, see Developing a Control File on page 75.
2. Create an Input tag group for each input print stream.
3. In the Input tag group, create a <FIELD> tag to identify the location of the data that you want to

extract. You can define fields based on a fixed location on the page using X and Y coordinates

177EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

or you can define fields relative to other text on the page. For example, you could define a field
for an account number that always appears after the text "Account Number: ".

4. Create an Output tag group.
5. In the Output tag group, create a Sidefile tag group. Side files are sometimes called data files

or extract files. Each Sidefile tag group creates one data file that contains one record for each
document processed in the specified output. You can use multiple Sidefile tag groups to create
multiple side files.

6. In the Sidefile tag group, create a <FILE> tag to define the filename to use for the side file. For
information see the Enrichment Language Reference Guide.

7. In the Sidefile tag group, create a <SIDEPART> tag to define each variable or constant to include
in the side file. Enrichment assembles the data into records, one record per document. Use as
many <SIDEPART> tags as necessary to define the record to write to the side file. For more
information see the Enrichment Language Reference Guide.

Example
Here is an example control file that extracts information from a print stream and writes it to a side
file.

<input>
<name> EXM1
<file> H:\PrintStreams\INPUT1.afp <! Input file. >
<type> AFPL A <! File is AFP line data. >
<document> 1 <! Every document is 1 page. >
<field> %%Customer_Number K <! Find the customer number. >
<location> 8 60 8

</field>
<field> %%invoice K <! Find the invoice amount. >
<location> 9 60 10

</field>
</input>
<output>

<name> MEMO
<file> H:\Output\output1.afp <! Output print stream. >
<sidefile>
<file> H:\Sidefiles\sidefile1.txt <! Report file. >
<sidepart> %%Customer_Number 8 R ' '
<sidepart> %%invoice 11 R ' '
<sidepart> %%DOCUMENT_NO 5 R 0 <! Sequential document number.>

</sidefile>
</output>

178EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

Postal Processing

Enrichment can interface with external applications to perform the various types of postal processing.

CASS™ Processing

The Coding Accuracy Support System (CASS™) is a United States Postal Service® (USPS®) program
that certifies the accuracy of address validation software. To qualify for certain postal discounts you
must use software that is CASS Certified™ to assign ZIP Code™, ZIP + 4® codes, and delivery point
barcodes to mail.

Makers of address validation software must pass a test designed by the USPS in order to have their
software designated as CASS Certified. CASS Certified software must pass tests of accuracy in the
following areas:

• Five-digit coding
• ZIP + 4/delivery point (DP) coding
• Carrier route coding
• Delivery Point Validation (DPV™)
• Locatable Address Conversion System (LACSLink™)
• Enhanced Line of Travel (eLOT™)
• Residential Delivery Indicator (RDI™)

When you use a CASSCertified product, you are assured of the following minimum levels of accuracy:

Table 13: CASS Certification Levels

Required Accuracy LevelCertification Level

98.5%ZIP

98.5%Carrier Route

98.5%ZIP+4

100%Delivery Point Barcode

100%eLOT

179EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

Required Accuracy LevelCertification Level

100%Perfect Addresses

Enrichment is not a CASS Certified product, but it can be used with CASS Certified software to
standardize addresses in print streams to USPS® requirements. To do this, Enrichment extracts the
addresses from the documents and passes them to a CASS Certified address cleansing program.
Address cleansing programs verify addresses and return the complete postal codes used to build
the IMB™ barcode.

You can use Finalist to standardize addresses.

CASS Processing - Specifying Address Information
Addresses are special variables used by Enrichment to perform CASS™ processing. There are two
ways to identify an address:

• The Input group <ADDRESSBLOCK> tag
• The Address tag group within the Input group.

Because an address is associated with a specific input stream, these tags go within the Input tag
group. Both methods are limited to addresses of up to six lines.

The Input group <ADDRESSBLOCK> tag is the easiest way to identify addresses. However, you
can only use it if:

• The address lines are always in the same position on the printed page
• Each address line is always located one line or record below the preceding address line, in the
same location on the record

• The address is on the first page of the document.

If the address location moves on the page or if each address line is not located within the print stream
one below the other (which is common in composed AFPDS or AFP line data), then you must use
the Address tag group. For information about using the Address tag group, see the Enrichment
Language Reference Guide.

CASS Processing - Enrichment Address Variable Processing
Enrichment performs the following special processing on address variables when you use CASS™
processing:

• The address variables are passed to the CASS™ program. The resulting cleansed address is
written into system variables called %%CASS_ADDR1 through %%CASS_ADDR6. Enrichment
also creates many other system variables. Refer to the Enrichment Language Reference Guide
for more information on the system variables created during postal processing.

180EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

• The system variable%%ADDRESSCHANGED identifies if the address was changed by the CASS™
software. You can also check the system variables associated with the return code for the cleansing
(such as %%LPCRC) to perform conditional processing.

• Unless the CASS group <FIELDREPLACE> tag is set to NO the values of %%CASS_ADDR1
through %%CASS_ADDR6 will replace the values of the address variables. If the <FIELD> tag
action parameter is set to R (replace) for these fields, the document is updated. If you set the
<FIELDREPLACE> tag to NO, you must manually set the values of the address variables in the
rule file if you want the address updated in the print stream.

The address variables and system variables can be used just like any other variables in the rules.

Enabling CASS Processing
To use CASS™ processing, follow these steps:

1. Verify that you have properly configured your Enrichment environment to use Finalist. For
configuration instructions, see the Installation Guide.

2. Create a control file. For more information, see Developing a Control File on page 75.
3. Create an Input tag group for the input print stream that contains the addresses you want to

standardize.
4. If the address information is always in the same position on the printed page, use an Input group

<ADDRESSBLOCK> tag to specify its location.

Note: The <ADDRESSBLOCK> tag can be used only for line data print streams. You
must use the Address tag group with composed streams, such as AFPDS, Metacode,
PCL and PostScript.

5. If you cannot use an <ADDRESSBLOCK> tag, do the following:

a. In the Input tag group, use the <FIELD> tag to define each address line as a field. Specify
the R parameter on the <FIELD> tag so that the address line can be replaced with the
standardized address returned from the CASS™ program. For example:

<FILED>Address1 R

b. Use the Address tag group to identify the fields that comprise the address information to
cleanse.

The following illustration shows the difference between defining addresses with
<ADDRESSBLOCK> and using <FIELD> tags in conjunction with the Address tag group.

181EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

6. In the Input tag group, specify the following to enable address cleansing for this input print stream:

<CLEANSE>Y7

7. Create a CASS tag group.
8. In the CASS tag group, create a <CASSTYPE> tag to specify that you will use Finalist for CASS™

processing. For more information on the <CASSTYPE> tag, refer to the Enrichment Language
Reference Guide.

9. If the input is not already in ZIP Code™ order, specify the <DOUBLESORT> tag in the CASS
tag group. This tag allows you to improve performance by sorting the input into ZIP Code™ order
before CASS™ processing. For more information see the Enrichment Language Reference
Guide.

10. In the CASS tag group, create a <FIELDREPLACE> tag. This tag specifies whether or not to
replace the address line or address block is to be replaced after the address is standardized.
For more information see the Enrichment Language Reference Guide.

11. Add additional tags to the CASS tag group to control CASS™ processes as needed. For more
information about the tags, refer to the discussion on the CASS tag group in the Enrichment
Language Reference Guide.

12. (Optional) Place documents whose addresses were successfully standardized in one output and
documents whose addresses could not be standardized in another.

a. Create two Output tag groups, one for addresses that were successfully standardized and
one for those that were not.

b. Create a Rule tag group.
c. In the Rule tag group, create the Content tag group.
d. In the Content tag group, in the DOCUMENT section, write an If statement that separates

documents that were successfully standardized from those that were not. The following
example separates documents based on the return code from Finalist and assumes that
there is an Output tag groups that defines an output named GoodOut and another Output
tag group that defines an output named BadOut.

<rule>
<content>
DOCUMENT: <!The rule section for document processing.>
if %%LPCRC < 1 then <!Separate the documents based on the >

182EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

<output> GoodOut <!return code from the CASS program. >
else
<output> BadOut

endif
</content>

</rule>

CASS Processing - Example with Finalist
The following is an example control file that illustrates how to perform CASS™ processing using
Finalist.

<input>
<name> CLEANSE <! Identifiable name. >
<file> H:\Input\MyInput.afp <! Input file name. >
<type> AFPL A <! AFP line data w/ ANSI controls.>
<doc> T %%AcctNum CHANGE <! Top of document when Account changes.>
<field> %%AcctNum KA <! Find all occurrences. >

<loc> 13 60 8 <! Line 13, column 60, for 8 bytes. >
</field> <addressblock> 9 9 35 4 L R <! Define address block for

cleansing >
<cleanse> YES <! Run the CASS cleanse program. >

</input>
<cass>

<casstype> LPC <! Specify Finalist as the CASS program. >
<doublesort> YES <! Sort the documents in zip code order >

<! before calling CASS program. This >
<! improves performance. Next specify >
<! reason code threshold for each of the>
<! nine Finalist reason >
<! codes and one general return code. >

<lpcreplace> 1 5 9 6 6 6 4 4 4 2
</cass>
<rule>

<content>
DOCUMENT: <! The rule section for document processing.>
if %%LPCRC < 1 then <! Separate the documents based on the >
<output> GoodOut <! return code from the CASS program. >

else
<output> BadOut

endif
</content>

</rule>
<output>

<name> GoodOut <! Identifiable name. >
<file> H:\Output\GoodOut.AFP <! Output file name. >

</output>
<output>

<name> BadOut <! Identifiable name. >

183EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

<file> H:\Output\BadOutput.AFP <! Output file name. >
</output>

Postal Presort

Presorting means sorting the documents in a print stream to minimize postal costs. Presorting
software, such as Mailstream Plus, identifies the optimal sort order and produces the required postal
reports. However, presorting software cannot operate on complex print streams. Enrichment interfaces
with presorting software to perform postal presort processing on print streams.

Note: Presort software such as Mailstream Plus is Presort Accuracy Validation and Evaluation
(PAVE™) certified by the USPS®.

Note: When Enrichment performs presort processing, it operates in "all-at-a-time" mode. For
more information, see Processing Flow on page 49.

During presorting, Enrichment identifies key information on all documents and builds an index. The
external presort program can sort the index file or remove records from it. Enrichment then reorders
the print stream to match the sorted index file. If any records have been removed, Enrichment can
write the documents associated with these records to a separate file (called a reject file).

Presorting effectively allows Enrichment users to change the order of documents in the print stream
and optionally exclude certain documents. The external programs that Enrichment calls can be postal
sorting programs or any other type of program that can manipulate an index.

As the following figure shows, Enrichment does the following during the presort process:

• Analyzes each document (1) in an output stream to gather the necessary sort information. Runs
DOCUMENT: rules.

• Writes the sort information, one line per document, to the presort index file (2).
• After all documents have been analyzed, Enrichment calls the external program (3) to sort and
purge records from the temporary index (4).

• Reads the sorted index (5) and reorders the documents to match the index order. Runs
PRESORTED: rules and writes out the documents (6).

• Compares the original index to the sorted index to identify missing records.
• Optionally, writes all documents associated with missing records to a reject file (7).

Note: Enrichment performs these steps in a single run, thus simplifying operation and improving
performance.

184EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

Use the Presort tag group within the Output group to specify outputs on which Enrichment is to
perform a postal presort (or system sort). The Presort group must begin with the <PRESORT> tag
and end with the </PRESORT> tag. Neither tag has parameters.

Using the Presort Tag Group to Call Other Programs
While originally designed to call postal presort software such as Mailstream Plus, the Presort tag
group can be used to call virtually any program, includingWindows batch files and UNIX shell scripts.
Furthermore, the Presort tag group can consist of multiple external programs that operate on the
presort index file. In this scenario, the <STEP> tag specifies each job step (that is, each program)
to execute. Enrichment processes <STEP> tags in the order in which they occur in the Presort tag
group. All of the programs specified by <STEP> tags run from within Enrichment, not as separate
steps in your script.

Rule File Processing for Presort
Enrichment runs the PRESORTED: section of the rules for each document after presort. PRESORTED:
rules are not run for outputs that are not presorted.

PRESORTED: rules are typically used to:

• Add banner pages between trays

185EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

• Break print streams between trays
• Create reports based on presorted documents.

For example, the following shows rule code that will compute and output a report of the number of
customers and total pages by tray.

START:
%%OLDTRAY =
%%TRAYDOCS = 0
%%TRAYPAGES = 0

PRESORTED:
IF %%OLDTRAY <> %%TRAY_NO AND

%%OLDTRAY <> THEN
%%REPORT = %%TRAYDOCS | , | %%TRAYPAGES | , | %%OLDTRAY
WRITE(DD:REPORT,%%REPORT)
%%OLDTRAY = %%TRAY_NO
%%TRAYDOCS = 0
%%TRAYPAGES = 0

ENDIF
%%TRAYDOCS = %%TRAYDOCS + 1
%%TRAYPAGES = %%TRAYPAGES + %%TOTAL_PAGES

FINISH:
%%REPORT = %%TRAYDOCS | , | %%TRAYPAGES | , | %%OLDTRAY
WRITE(DD:REPORT,%%REPORT)

Performing Presort
To perform postal presorting, follow these steps.

1. Verify that you have properly configured your Enrichment environment to use Mailstream Plus.
For configuration instructions, see the Installation Guide.

2. Create a control file. For more information, see Developing a Control File on page 75.
3. Create Input tag groups for each input print stream. Identify the address on each input using the

<ADDRESSBLOCK> tag or the Address tag group.
4. Create Output tag groups for each output print stream.
5. In the Output tag group, create the Presort tag group.
6. In the Presort tag group, create a <PRETYPE> tag to specify which program you will use to

perform the postal presort (for example, Mailstream Plus).
7. In the Presort tag group, create a <FILE> tag to specify the presort index file that Enrichment

will create.
8. In the Presort tag group, create a <SORTPART> tag and specify they system variable

%%DOCINDEX as follows:

<SORTPART> %%DOCINDEX 8

This is required for presorting.

186EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

9. (Optional) In the Presort tag group, create additional <SORTPART> tags that specify additional
information that you want to use to build the presort index file. For additional information, refer
to the Enrichment Language Reference Guide.

10. In the Presort tag group, create a <STEP> tags to call your postal presort program (such as
Mailstream Plus). For additional information, refer to the Enrichment Language Reference Guide.

Postal Presort Example
The following example demonstrates how to perform a postal presort on mainframe systems using
a POSTNET™ Code barcode as the sort criterion.

<input>
<name> INPUT <! Identifiable name. >
<file> DD:INPUT <! Input file name. >
<type> AFPL A <! AFP line data w/ANSI controls.>
<doc> T %%AcctNum CHANGE <! Top of document when field changes. >
<field> %%AcctNum KA <! Find all occurrences >

<loc> 13 60 8 <! Line 13, column 60, for 8 bytes. >
</field>
<field> %%SortBar K <! The delivery point barcode field >

<loc> 12 10 12 <! Print line 12, column 10, 12 bytes. >
</field>

</input>
<rule>

<content>
<! Initialize the variables used in the rule. >
START:
%%Oldtray = ' '
%%Traydocs = 0
%%Traypages = 0

<! Everytime there is a new tray, make an entry in the report >
<! file that has the accumulated total documents pages. >
PRESORTED:
if %%TRAY_NO <> ' ' THEN <! don't increment for rejects >
if %%Oldtray <> %%TRAY_NO AND %%Oldtray <> '' then

%%Report = %%Traydocs | ',' | %%Traypages | ',' | %%Oldtray
WRITE('DD:TRAYRPT',%%Report,FB, 80, 8000)
%%Oldtray = %%TRAY_NO
%%Traydocs = 0
%%Traypages = 0

endif
%%Traydocs = %%Traydocs + 1
%%Traypages = %%Traypages + %%TOTAL_PAGES
endif
<! Make the last entry in the report for the last tray. >
FINISH:
%%Report = %%Traydocs | ',' | %%Traypages | ',' | %%Oldtray
WRITE('DD:TRAYRPT',%%Report,FB, 80, 8000)

</content>
</rule>
<output> <! The presorted output file. >

187EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

<name> GoodOut <! Identifiable name. >
<file> DD:OUTPUT1 <! Output file name. >
<presort> <! Specify presort details. >

<pretype> LPC <! Type of presort to be done. >
<file> DD:MSSTIN
<sortpart> %%DOCINDEX 8 L ' ' <! System variable, 8 bytes. >
<sortpart> %%SortBar 12 L ' ' <! POSTNET data, 12 bytes. >
<rejectfile> DD:REJECT <! Any documents with invalid zipcodes>
<! The presort steps to process with appropriate params and >
<! in the order of execution. >
<step> MSDR00
<outfile1> DD:MSWKIJ4 400 <! Presorted, indexed file. >

</presort>
</output>

ConnectRight Mailer

Enrichment can call ConnectRight Mailer (CRM) using ConnectRight Mailer’s Hot Folder Monitor.
For Enrichment to call ConnectRight Mailer, you must use <CASSTYPE> C and <PRETYPE> C.

The ConnectRight Mailer Import step must have a field layout beginning with:

• 16 bytes for an unmapped index
• 70 bytes for address line 1
• 70 bytes for address line 2
• 70 bytes for a City/State/Zip line
• 32 bytes for an Urbanization line

And it must end with a 2 byte field for the Carriage Return and Line Feed character

The ConnectRight Mailer Export step must have a field layout beginning with:

• 16 bytes for the unmapped index
• 70 bytes for address line 1
• 70 bytes for address line 2
• 43 bytes for the combined City/State/Zip line

You can include additional fields in either the Import or Export step.

The <CRMHOTFOLDER> tag must be included in the <CASS> group, describing where
the CRM job will look for the input file.

<CRMHOTFOLDER>

188EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

In the <PRESORT> group, the <FILE> tag must be the CRM project name followed by
.txt.

For example:

<FILE> crmin.txt

<FILE>

The first <SORTPART> tag must be:

<SORTPART> %%DOCINDEX 16 R ' '

The second <SORTPART> tag must be: <SORTPART> %%SCAN_RESULTS 240 R '
'

<SORTPART>

The <OUTFILE1> tag must point to the file name, excluding the path, of the Export step
in ConnectRight Mailer, followed by the record length that ConnectRight Mailer will
generate. Unless additional fields are included, the record length will be 201.

For example:

<OUTFILE1> crmout.txt 201

<OUTFILE1>

The <INDEXCOL> tag must be:

<INDEXCOL> 1 16

<INDEXCOL>

By default, address lines will be replaced with the results from ConnectRight Mailer. If additional
fields are included in the output, the CRM output record can be processed in the rule file. The system
variable %%PRESORT_RECORD will contain the entire record from ConnectRight Mailer.

ConnectRight Mailer Example
An entire <CASS> group might look like this:

<cass>
<casstype> C
<crmhotfolder> C:\crmHotFolder\CRMIN
</cass>

And an entire <PRESORT> group might look like this:

<presort>
<pretype> CRM
<file> crmin.txt
<sortpart> %%DOCINDEX 16 R ' '
<sortpart> %%SCAN_RESULTS 240 R ' '
<outfile1> crmout.txt 201
<indexcol> 1 16
<rejectfile> DDOUTPUT2 //resulted reject file is empty;

</presort>

189EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

Using Mail360 for Intelligent Mail Barcodes

Mail360 Manager assigns and manages Intelligent Mail Barcode® serial numbers. It provides the
following functionality:

• Assignment and management of unique Intelligent Mail Barcode®
• Linking an Intelligent Mail® Barcode to an internally recognizable uniqueness identifier
• Integration of correspondence to improve business processes in departments such as billing,
marketing, and customer support

While it is possible for you to use another tool to generate serial numbers for Intelligent Mail Barcodes,
the Enrichment control file language provides elements that allow you to easily control Mail360
processing. If you do not have a license for Mail360 Manager, contact your sales representative.

To use the serial numbers generated by Mail360 Manager for barcodes applied by Enrichment, use
the following:

This tag specifies the location of the Mail360 configuration file.

Note: For Enrichment to call Mail360 on z/OS, the XPLINK(ON) run-time option
must be specified. For example: //M360JOB EXEC PGM=PDRSW000,
PARM='XPLINK(ON)/'.

<MAIL360CONFIG>

This function retrieves a range of consecutive serial numbers from Mail360 Manager.IMBRange

This function encodes the IMB values into a string of digits representing the bars in the
Intelligent Mail Barcode, which could be ascender, descender, full bar, or tracker.

IMB

See the Enrichment Language Reference Guide for complete information on these elements.

The following example control file shows how to utilize Mail360.

/***/
/* This sample illustrates how to use Mail360 Manager to generate */
/* Intelligent Mail Barcodes with Enrichment. */
/***/
<environment>

<mail360Config> C:\mail360\myg1imb.cfg // Location of Mail360 config
file
</environment>
/***/
/* the ZIP Code is captured as a field. This field will be used */
/* to build the Intelligent Mail Barcode. */
/***/
<input>

190EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

<name> InputFile
<file> c:\jobs\Statements.afp
<doc> 1
<type> A
<field> %%Zip KA
<location> 1 78 5

</field>
</input>

/***/
/* Static variables are set in the start section of the rule file */
/***/
<rule>

<content>
start:

%%Mailer_ID = "060540" // USPS-assigned mailer ID, 6 or 9 digits

%%Barcode_ID = 00 // Barcode identifier; see USPS docs for
IMB

%%Service_Type = 040 // Service type identifier; see USPS docs
for IMB

%%Partition_ID = "02" // Mail360 partition ID; see Mail360 docs

%%Block_Size = 500 // Initial number of serial nos to get
from Mail360

/* IMBRange control variables used in mathematical computations
*/

%%Remainder = 0
%%Serial_Num = 0
%%Num_Avail = 0

%%RangeRC = 0
%%RangeRV = 0
%%RangeRM = " "

document:
/*
* Get the serial numbers from Mail360 using IMBRange.
* It returns the starting number and remainder.
* %%Serial_Num will contain the starting serial number.
* %%RV will contain the remainder if the full request
* could not be fulfilled.
*/

/**/
/* 1) Check to see if there are serial numbers available and */
/* if it is 0 then request a block of new serial numbers */
/* 2) Check the return codes and return values %%RC, %%RV, %%RM */
/* 3) Upon successful return, assign serial number to a variable %% */
/* 4) Subtract from the remainder, and keep looping to */
/* subtract numbers from the block. */

191EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

/* 5) If there is an error, write out a message. */
/**/

if %%Num_Avail = 0 then
%%Serial_Num = IMBRANGE(%%Mailer_ID, %%Block_Size,

%%Partition_ID)

%%RangeRC = %%RC
%%RangeRV = %%RV
%%RangeRM = %%RM
if %%RangeRC = 0 then

%%Remainder = %%RangeRV
%%Num_Avail = %%Block_Size - %%Remainder
%%Block_Size = 3 // For subsequent GetRange requests

else
%%Msg = "Error code = " | %%RangeRC | " %%RangeRM=" |

%%RangeRM | "%%RangeRV=" | %%RangeRV
WRITE("ErrorLog.txt", %%Msg)

endif
endif

/*
* Generate the IMB
*/

// Fix length of serial number.
// Mail360 Manager always returns 9 bytes.
// A 6 digit Mailer ID results in a 9 digit serial number
// A 9 digit Mailer ID results in a 6 digit serial number

if LENGTH(%%Mailer_ID) = 6 then
%%Serial_Num = JUSTIFY(%%Serial_Num, R, 9, 0)

endif
if LENGTH(%%Mailer_ID) = 9 then

%%Serial_Num = JUSTIFY(%%Serial_Num, R, 6, 0)
endif

// concatenate all required fields into a %%payload variable
// call the IMB function and the string to be encoded is returned

// into the %%NUMS variable
// increment %%Serial_Num counter & decrement %%Num_Avail counter

%%payload = %%Barcode_ID | %%Service_Type | %%Mailer_ID |
%%Serial_Num | %%Zip

%%NUMS = IMB(%%payload)
%%Serial_Num = %%Serial_Num + 1
%%Num_Avail = %%Num_Avail - 1

</content>
</rule>

192EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

/**/
/* Add the IMB barcode using the %%NUMS variable data */
/**/

<add>
<addtype> IMB
<addpart> %%NUMS 65
<position> 1 10

</add>
/**/
/* Write the output file */
/**/

<output>
<name> OutputFile
<file> c:\jobs\StatementsWithIMB.afp

</output>

Using IMpb barcodes with <CODE128>

This sample illustrates how to encode an Intelligent Mail package barcode (IMpb), including the
required FNC1 character. To generate the FNC1 character in an Enrichment-generated Code 128
barcode, you must use x'16'. Different IMpb formats may require the FNC1 character in fewer, or
different, locations.

For more information about:

• Code 128 barcodes, see the Enrichment Language Reference Guide
• IMpb, go to
https://ribbs.usps.gov/intelligentmail_package/documents/tech_guides/PUB199IMPBImpGuide.pdf.

/***/
/* This sample illustrates how to use the <CODE128> tag to generate */
/* Intelligent Mail package barcodes with Enrichment. */
/***/
<INPUT>
<NAME>INPUT
<file>C:\test\blankpage.afp
<TYPE>A
<density> 240

</INPUT>
<OUTPUT>
<NAME>OUTPUT
<add>
<addtype> 128
<code128> C
<addpart> x'16' // FNC1
<addpart> 420 // Routing Application ID

193EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

https://ribbs.usps.gov/intelligentmail_package/documents/tech_guides/PUB199IMPBImpGuide.pdf

<addpart> 123456789 // Zip Code (9 digits)
<addpart> x'16' // FNC 1
<addpart> 94 // Channel Application ID
<addpart> 123 // Service Type Code
<addpart> 12 // Source ID
<addpart> 912345678 // Mailer ID
<addpart> 1234567 // Serial Number
<addpart> 1 // MOD 10 check digit
<bars> 3 PELS
<height> 60 PELS
<orient> 1
<position> 100.0 1000.0 PELS
</add>

<FILE>impb.afp

</OUTPUT>

The generated barcode for this sample is:

Managing Print Stream Resources

Print stream resources are items such as images and fonts that are used in AFPDS and PCL print
streams. For more information on resource management, see the following topics.

Merging Resources

Resource merging is useful when splitting, sorting, or merging files. For example, if Enrichment is
merging two input files that both have font FONT1234 as a resource, Enrichment can identify which
instance of FONT1234 to use in the merged output. If Enrichment determines that both fonts are the
same, the first font is used and the second one is discarded.

To enable resource merging, use these Enrichment language elements:

This tag enables resource management. Enrichment scans each input record,
reconciling resources with duplicate names and creating new unique names if
resources are different.

<RESOURCESCAN>

194EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

This tag specifies whether or not Enrichment should remove and/or replace inline
resources for a specific output file.

<RESOURCEREPLACE>

This system variable indicates the number of fonts on a page.%%NUM_FONTS

This function returns the AFPDS font whose local ID in the MCF record for the page
matches the requested font number. This function can only be used in the PAGE
section of the rule file.

GETFONT

For complete information on <RESOURCEREPLACE>, <RESOURCESCAN>, %%NUM_FONTS,
and GETFONT, see the Enrichment Language Reference Guide.

Using Resource Files

Enrichment can extract resources from a print stream and create separate resource files for each
resource, or a single file for all resources in a given input. These resource files can then be read in
to other input print streams, allowing you to apply resources consistently across multiple inputs. For
example, Enrichment can create a font resource file for each font it finds. These font files can then
be used by other input print streams to ensure the consistent use of fonts.

To create and use resource files, use the following tags:

This tag enables the creation of resource files. Use it to specify the file, directory,
or PDS (on mainframe systems) where you want Enrichment to create the
resource files.

<RESOURCEOUTFILE>

OnWindows, Linux, and Unix, this tag specifies the file extension to use for each
type of resource file (font resources, overlays, images, etc.). This tag is not used
on mainframe systems.

<RESOURCEEXTENSION>

This tag specifies a resource to read into a print stream. If this tag is present,
<RESOURCESCAN> is set automatically set to YES.

<RESOURCEINFILE>

For complete information on these tags, see the Enrichment Language Reference Guide.

195EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

Logging Resource Activities

Enrichment can optionally log the names of the resources found in the input print stream. To enable
resource logging, use the <RESOURCELOGFILE> tag. For complete information on the use of this
tag, see the Enrichment Language Reference Guide.

Creating a Vault Journal File

Enrichment can create a Vault journal file for the print streams it processes, allowing you to archive
Enrichment output in Vault.

Note: If you have licensed Visual Engineer, there is a utility available that greatly simplifies
the process of generating a Vault journal file. For more information, see the Visual Engineers
User Guide.

To create a Vault journal file:

1. In your Enrichment control file, add the following code. This code creates <XMLELEMENT> tag
groups to map the XML elements to user defined variables. The variables are populated by rule
file processing, which will be added in a later step.

<xmlelement>
<xmlname> endeGAD
<content>
</eGAD>

</content>
</xmlelement>

<xmlelement>
<xmlname> jobdata
<content>
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE eGAD SYSTEM "eGAD.Dtd">
<eGAD pakUID="%%DTD_pakUID" >
<jobdata>
<datetime>%%DTD_datetime</datetime>
<platform>%%DTD_platform</platform>
<Version major="%%DTD_Version_major"
minor="%%DTD_Version_minor" >
%%DTD_Version</Version>

<JobGUID>%%JOBGUID</JobGUID>
<JobName>%%DTD_JobName</JobName>
<JobShortName>%%DTD_JobShortName</JobShortName>

196EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

<NativeFormat value="%%DTD_NativeFormat_value" />
<!--repeatable-->
<ResourceGUID value="%%DTD_ResourceGUID_value"

p="%%DTD_ResourceGUID_p" />
<!--/repeatable-->

</jobdata>
</content>

</xmlelement>

<xmlelement>
<xmlname> document
<content>
<document docID="%%DTD_docID"
docMasterID="%%DTD_docMasterID"
docInstanceID="%%DOCGUID" >
<VendorId>%%DTD_VendorId</VendorId>
<DocTypeId>%%DTD_DocTypeId</DocTypeId>
<AccNo>%%DTD_AccNo</AccNo>
<StmtDate>%%DTD_StmtDate</StmtDate>
<PayDetails>
<DueDate>%%DTD_PayDetails_DueDate</DueDate>
<!--repeatable-->
<Amt type="%%DTD_PayDetails_Amt_type"
curr="%%DTD_PayDetails_Amt_curr" >
<Due>%%DTD_PayDetails_Amt_Due</Due>
<MinDue>%%DTD_PayDetails_Amt_MinDue</MinDue>

</Amt>
<!--/repeatable-->

</PayDetails>
<!--repeatable-->
<DDSDocValue name="%%DTD_DDSDocValue_name"
type="%%DTD_DDSDocValue_type"
len="%%DTD_DDSDocValue_len"
UsedBy="%%DTD_DDSDocValue_UsedBy" >

%%DTD_DDSDocValue</DDSDocValue>
<!--/repeatable-->
<CustData>
<Name>%%DTD_CustData_Name</Name>
<!--repeatable-->
<Addr line="%%DTD_CustData_Addr_line" >
%%DTD_CustData_Addr</Addr>

<!--/repeatable-->
<City>%%DTD_CustData_City</City>
<Region>%%DTD_CustData_Region</Region>
<PostalCode>%%DTD_CustData_PostalCode
</PostalCode>

<Country>%%DTD_CustData_Country</Country>
<Phone>%%DTD_CustData_Phone</Phone>

</CustData>
<NumberOfPages value="%%DTD_NumberOfPages_value" />
<Skipped>
<!--repeatable-->
<SPages>%%DTD_Skipped_SPages</SPages>

197EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

<!--/repeatable-->
</Skipped>
<ToC>
<!--repeatable-->
<BMark level="%%DTD_ToC_BMark_level"
name="%%DTD_ToC_BMark_name"
pageID="%%DTD_ToC_BMark_pageID"
lref="%%DTD_ToC_BMark_lref" >

</BMark>
<!--/repeatable-->

</ToC>
</document>
</content>

</xmlelement>

2. Create an <OUTPUT> tag group. In the <OUTPUT> tag group:

• Create an <XMLFILE> tag and specify a file name for the journal file.
• Specify one or more <XMLPART> tags. The <XMLPART> tag indicates which XML elements
to include in the journal file. (For more information, see the Enrichment Language Reference
Guide.) The name you use in the <XMLPART> tag corresponds to the names you assigned
to the XML elements with the <XMLNAME> tag.

For example, the completed <OUTPUT> tag group may look similar to this:

<output>
<name> Output1
<file> c:\myfiles\statements.afp
<xmlfile> c:\myfiles\journalfile.txt
<xmlPart> jobdata H
<xmlPart> document D
<xmlPart> endeGAD T

</output>

3. In the rule file, assign values the variables defined in the <XMLELEMENT> tag groups. This will
determine the values placed in the journal file’s fields. For example:

<rule>
<content>
DOCUMENT:
%%DTD_CustData_Addr[0] = %%Name
%%DTD_CustData_Addr[1] = %%AddressLine1
%%DTD_CustData_Addr[2] = %%AddressLine2
%%DTD_CustData_Addr[3] = %%AddressLine3

</content>
</rule>

Note: If a variable is defined in the <XMLELEMENT> tag group but not assigned a value
in the rule file, the variable name is used as the value. For example, the variable
%%DTD_datetime contains the value for the journal file tag <datetime> as specified in
the <XMLELEMENT> tag group. If the variable%%DTD_datetime is not assigned a value

198EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

in the rule file, then the variable name will be used as the field value in the journal file:
<datetime>%%DTD_datetime</datetime>

199EngageOne Enrichment 7.4.1 Developer Guide

Commonly-Used Features

5 - Running an
Application

In this section

Running on Mainframe Systems..201
Running on UNIX..205
Running on Windows..207
Run-Time Arguments...208
Return Codes...213
Using Field Values to Halt Processing..213
Performance Tuning...213
Required Print Resources..216

Running on Mainframe Systems

If you are using a mainframe system, JCL controls Enrichment applications. On systems using
modules built with an IBM compiler, specify run-time arguments in the Enrichment JCL PARM
statement as follows:

PARM='Cruntime//switch1 /switch2'

where

Is any number of z/OS or C/370 run-time options to use during processing. Often, there are
no C/370 run-time options specified. Do not use this parameter if you are operating a version
of Enrichment compiled with SAS/C. If this parameter is applied, it must be separated from
the arguments that follow with a concluding slash (/).

Cruntime

Is an Enrichment run-time argument. Each Enrichment switch must begin with a slash (/).
For the first switch, this slash comes after the closing slash for the C/370 run-time arguments.

switchN

For a complete listing of run-time arguments, see Run-Time Arguments on page 208.

Note: If you receive the error "CEE3191E An attempt was made to initialize an AMODE24
application without using the ALL31(OFF) and STACK(,,BELOW)", change your EXEC
PDRSW000 statement to include PARM='ALL31(OFF),STACK(,,BELOW)/'.

A sample Enrichment JCL is shown below.

//*your job card
//***
//** This is a sample Enrichment job.
//** Change SYS3.C370 to the high level qualifier for C/370 run-time.
//** Change SYS3.PLI to the high level qualifier for the PLI library.
//** Change PDR.STREAMW to the high level qualifier for Enrichment.
//** Change all DDs to reference your particular data set names.
//***
//JOBLIB DD DSN=PDR.STREAMW.LOAD,DISP=SHR
// DD DSN=SYS3.C370.SEDCLINK,DISP=SHR
// DD DSN=SYS3.PLI.SIBMLINK,DISP=SHR
//*
//***
//* This step runs Enrichment.
//SWEAVE EXEC PGM=PDRSW000
//* The control file can be either in-stream data or
//* a separate data set as the example shows.
//CONTROL DD DSN=CONTROL.FILE,DISP=SHR

201EngageOne Enrichment 7.4.1 Developer Guide

Running an Application

//*
//* Input print stream for Enrichment job.
//INPUT1 DD DSN=INPUT.DATA,DISP=SHR
//*
//* You could optionally have a rule file.
//RULE DD DSN=OPTIONAL.RULE.FILE,DISP=SHR
//*
//* Output: Enhanced print stream
//OUTPUT1 DD DSN=OUTPUT.FILE,DISP=SHR
//*
//* Summary Report and Messages
//REPORT DD DSN=MESSAGE.SUMMARY,DISP=SHR
//

Temporary File Storage

When used to sort, presort, double-sort, or match documents, Enrichment copies entire input print
streams to temporary storage to enable random retrieval after the sort. Enrichment uses extended
memory, Hiperspace memory, and one or more entry-sequenced data set (ESDS) VSAM files for
temporary storage.

Note: Enrichment only caches input print streams if you are sorting, presorting, or
double-sorting documents. In all other configurations, Enrichment processes documents one
at a time and does not use Hiperspace, VSAM, or disk.

To reduce disk I/O, Enrichment uses memory (above the 16MB) to temporarily store inputs for
processing. If Enrichment exceeds a user-specified amount of memory, it then uses Hiperspace
memory to hold the inputs, when available. If Hiperspace is not available, is exceeded, or if a
user-specified amount of Hiperspace is exceeded, Enrichment uses ESDS VSAM files for temporary
storage. In many cases, you will not need to use VSAM or disk storage with Enrichment. However,
if an input is very large, you can specify that it be stored exclusively in Hiperspace or VSAM or disk.
Set the <IO> tag to HIPERSPACE to use Hiperspace exclusively, to DISK to use VSAM or disk
exclusively, or to TRANSFER to use Hiperspace then VSAM.

Note: Make sure to set the <SINGLEBUFFER> tag when doing large document processing.
<SINGLEBUFFER> allows you to define the initial size and growth factor for the single
document buffer.

Use the Input group <TEMPDISK> tag to identify VSAM or disk files to Enrichment. If it is possible
that your input data could exceed the capacity of a single ESDS VSAM file, you can use multiple
<TEMPDISK> tags to specify multiple files.

Insert pages can be stored in memory, Hiperspace, or disk. Or, if uniquely set for each document,
the insert pages may not be stored at all by using <IO> NONE.

202EngageOne Enrichment 7.4.1 Developer Guide

Running an Application

Using Hiperspace for Temporary File Storage
If you do not have sufficient memory to store documents temporarily, you may want to use hiperspace
memory. Three tags affect how Enrichment uses hiperspace: the Input group <IO> tag, the
Environment group <HIPERMAX> tag, and the Environment group <HIPERTRANSFER> tag.

Note: Hiperspace is only available on mainframe systems when you use the IBM C run-time
libraries.

<HIPERMAX> Tag

If you set <IO> to TRANSFER or OPTIMUM, the Environment group <HIPERMAX> tag specifies
the maximum amount of hiperspace to use before switching to disk. The valid range for <HIPERMAX>
is 1K to 2048M.

Note: If your application uses all available hiperspace, Enrichment will abend when it tries to
transfer to disk. To avoid this, set <HIPERMAX> to an amount less than the maximum available
hiperspace.

<HIPERTRANSFER> Tag

The Environment group <HIPERTRANSFER> tag defines the size of a memory area used by
Enrichment to send data to and from hiperspace. The transfer area is only used if hiperspace is
used. The valid range for <HIPERTRANSFER> is 0K to 2M.

Note: If Enrichment issues a PDR2164 or PDR2165 error, it is probably caused by a
hiperspace environment issue. Lower your <HIPERTRANSFER> setting until Enrichment
processes without issuing the error. If the error persists, set <HIPERTRANSFER> to 0 so
Enrichment only uses memory and disk for storage.

C run-time defaults to a transfer area size of 16K. Enrichment's default for <HIPERTRANSFER> is
100K. We recommend that you set <HIPERTRANSFER> no lower than 16K, unless you set <IO>
to OPTIMUM and want Enrichment to go from memory straight to disk. In this case, as above, set
<HIPERTRANSFER> to 0.

Using VSAM Files for Temporary File Storage
If you prefer not to use memory for temporary document storage, you can use VSAM files. Using
VSAM files reduces performance but saves memory. The VSAM files must be reusable and must
be large enough to contain the entire input print stream or print streams being processed.

The VSAM files must exist before Enrichment can run. You do not need to load the ESDS VSAM
files prior to using Enrichment because Enrichment performs the first load if necessary. However,
Enrichment cannot create the files.

203EngageOne Enrichment 7.4.1 Developer Guide

Running an Application

Each time Enrichment uses VSAM files for temporary data, it destroys the previous contents of the
files. Therefore, you can use the same VSAM files for a production Enrichment application, even if
you run the application daily. However, you should use different VSAM files for different Enrichment
applications.

To use VSAM for temporary document storage:

1. In the control file, set the Input tag group <IO> tag to DISK.

Note: You can also use the <IO> tag in the Banner, Insertpage, and Insertrec groups to
define banner or insert storage.

2. In the appropriate Banner, Input, Insertpage, or Insertrec tag group, use the <TEMPDISK> tag
to identify the VSAM file that you want to use for temporary document storage.

If you do not specify the <TEMPDISK> tag, the default DD:WORKVSAM is used and you must
ensure that the data set exists or Enrichment processing will stop. You must define this file as
reusable, and it must be large enough to contain the entire input print stream or print streams
being processed.

Note: When using <TEMPDISK> to define VSAM for AFPDS, the maximum record size
must be at least 8205 or data records may get truncated.

3. If the input is so large that the VSAM storage requirement exceeds a disk pack, you can use
multiple VSAM files (none to exceed a pack). When setting this up, you must specify one
<TEMPDISK> tag in the Enrichment control file for each additional VSAM file.

4. Allocate a VSAM file using the reserved DD nameWORKVSAM in your JCL to point to the VSAM
file. The figure below shows an example of JCL statements used to create an ESDS VSAM file
(sometimes called a cluster) for use with Enrichment.

//***
//* Example of how to define an ESDS VSAM data set
//*
//* To use this job:
//* 1) Supply a proper job card
//* 2) change the following IDCAMs statement values...
//* datasetname -> the name you want for your data set
//* size -> the number of cylinders to allocate
//* avglrecl -> the average record size of your input
//* maxlrecl -> the maximum record size of your input
//* volume -> the volume to allocate the data set on
//***
//IDCAMS EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=N
//SYSIN DD *
DELETE -
datasetname -
CLUSTER
DEFINE CLUSTER -
(NAME (datasetname) -
CYLINDERS (size) RECSZ (avglrecl maxlrecl) -

204EngageOne Enrichment 7.4.1 Developer Guide

Running an Application

VOL (volume) REUSE -
NONINDEXED -
)

Blocking Input and Output Data Sets on Mainframe Systems

File blocking can significantly impact Enrichment performance on mainframe systems. Enrichment
is written in C and requires special file blocking for optimum performance. While COBOL buffers
block themselves and therefore control their own performance, C requires you to set the blocking in
the JCL (for example, DCB=(BUFNO=30)). Keep the following in mind when you set blocking:

• Always use 1/2 track blocking, even when routing output to SYSOUT.
• Try to buffer 1/2 cylinder (BUFNO=15). If possible, full cylinder buffering is recommended
(BUFNO=30).

• Use BUFNO for both inputs and outputs and to TAPE as well as DASD.
• Use IEBGENR to reblock bad inputs to a temporary file before running Enrichment (for example,
when LRECL and BLKSIZE are both 133). This can improve I/O performance.

These I/O buffers are obtained from memory below the 16MB line, so if you have many inputs or
outputs you can run out of memory for Finalist or other programs that run below the line. If you cannot
use BUFNO=15 because of memory problems, only use BUFNO on your largest inputs and outputs
or drop the BUFNO to 10 or 5.

The following shows JCL in which blocking is properly set.

//INVOICES DD DSN=PDRC.SW.DATA,
// DISP=(NEW,CATLG,DELETE),
// DCB=(LRECL=133,BLKSIZE=27930,RECFM=FBA,BUFNO=30),
// SPACE=(CYL,(10,10),RLSE),UNIT=SYSDA

Running on UNIX

You can run Enrichment in scripts, from the command line, from within your programs, or in any
other manner that you would use a standard UNIX application.

The easiest way to run Enrichment is through the ../Enrichment/bin/swvrexe script. With
swvrexe, you pass Enrichment arguments on the swvrexe command line just as you would if you
were executing Enrichment directly. The script does the following:

• Sets up PATH to point to Enrichment
• Establishes SWVR_LIB

205EngageOne Enrichment 7.4.1 Developer Guide

Running an Application

• Establishes PBSSTTY
• Sets up a library path to point to callable library functions

Specify run-time arguments using this syntax:

sweaver -Arg1 -Arg2 -Arg3

where ArgN is an Enrichment run-time argument. Each argument must be separated from the
preceding argument by a space and must begin with a dash (-). For a complete listing of run-time
arguments, see Run-Time Arguments on page 208.

If you do not use swvrexe to run Enrichment, you must add the directory that contains the Enrichment
executable to your path so that you can run it directly from the command line.

Note: AIX® uses a delayed paging slot allocation technique for storage allocated to
applications. When storage is allocated to an application with a subroutine, such as malloc,
no paging space is assigned to that storage until the storage is referenced. This technique is
useful for applications that allocate large sparse memory segments. However, this technique
can affect portability of applications that allocate very large amounts of memory. If the
application expects that calls to malloc will fail when there is not enough backing storage to
support the memory request, the application might allocate too much memory. When this
memory is referenced later, the machine quickly runs out of paging space and the operating
system kills processes so that the system is not completely exhausted of virtual memory. The
application that allocates memory must ensure that backing storage exists for the storage
being allocated. Setting the PSALLOC environment variable to PSALLOC=early changes
the paging space allocation technique to an early allocation algorithm. In early allocation,
paging space is assigned once the memory is requested.

For more information, refer to “Paging space and virtual memory in Operating system and device
management” from your AIX manual for more information.

Enrichment Executables

Enrichment has two UNIX executables that you use in different processing scenarios.

sweaver

Use this executable if you do not need to process input and/or output files larger than 2 GB. An
example usage is:

sweaver -t=f -c=control.file -m=message.summary

206EngageOne Enrichment 7.4.1 Developer Guide

Running an Application

sweaverL

Use this executable to process input and/or output files larger than 2 GB. This executable has higher
system requirements than sweaver. See the Installation Guide for the system requirements for
processing large files. An example usage is:

sweaverL -t=f -c=control.file -m=message.summary

Temporary File Storage on UNIX

When used to sort, presort, double-sort, or match documents, Enrichment copies entire input print
streams to temporary storage to enable random retrieval after the sort. On UNIX systems, Enrichment
uses virtual memory and disk files for temporary storage. Enrichment can automatically switch
between storage methods or you can specify the type to use by using the <IO> tag.

Running Simultaneous Jobs on UNIX

Running multiple Enrichment jobs simultaneously on a UNIX system reduces performance by a factor
equal to the number of jobs you are running. For example, if you run two Enrichment jobs
simultaneously, performance is reduced by approximately 50 percent. You can improve performance
for running multiple jobs by increasing the amount of RAM on the system. Another way to improve
multi-job performance is to run one Enrichment process on one fixed disk drive and the other
Enrichment process on a second fixed disk drive. Performance can further be improved if you have
separate controllers, one for each fixed disk drive doing I/O.

Running on Windows

Enrichment runs like any other Windows application. You should add the directory that contains the
Enrichment executable to your workstation’s PATH environment variable so that you can run it directly
from the command line. You can also use Enrichment in scripts, from the command line, from within
your programs, or in any other manner that you would use a standard Windows application.

To run the executable from the command prompt use this syntax:

sweaver -c=control.file -m=message.file

Specify run-time arguments using this syntax:

sweaver -Arg1 -Arg2 -Arg3

207EngageOne Enrichment 7.4.1 Developer Guide

Running an Application

where ArgN is an Enrichment run-time argument. Each argument must be separated from the
preceding argument by a space and must begin with a dash (-). For a complete listing of run-time
arguments, see Run-Time Arguments on page 208.

Temporary File Storage on Windows

When used to sort, presort, double-sort, or match documents, Enrichment copies entire input print
streams to temporary storage to enable random retrieval after the sort. On Windows systems,
Enrichment uses virtual memory and disk files for temporary storage. Enrichment can automatically
switch between storage methods or you can specify the type to use by using the <IO> tag.

Run-Time Arguments

You can provide arguments to Enrichment at run time to supplement or override certain tag values
specified in the control file and to create user-defined variables. The following table shows valid
run-time arguments:

DescriptionArgument

Specifies a job number to use for control files using a transform work flow. The default is 1.-#=jobid

Specifies whether to enable tracing for Finalist processing. This can be used to isolate
problematic addresses during the cleansing process.

traceLevel is one of the following: A trace level value where:

• 1—Displays ADDRSCAN input.
• 2—Displays ADDRSCAN results.
• 4—Displays Finalist input.
• 8—Displays Finalist results.

A combination of these values can be used. For example:

A=12 Enable 4 and 8 (Finalist input and output).

A=7 Enable 1, 2 and 4

A=15 Enable all

A=3 Enable 1 and 2

If an invalid value is specified Enrichment uses the default value of 15.

n specifies the number of documents to process prior to enabling the trace. This is optional

-A=traceLevel,[n]

208EngageOne Enrichment 7.4.1 Developer Guide

Running an Application

DescriptionArgument

Specifies the control file to use for Enrichment processing. If you do not use this switch,
Enrichment assumes the control file is DD:CONTROL for mainframe systems or
STREAMW.CON for UNIX and Windows. If you have not defined DD:CONTROL on your
mainframe system, processing halts.

-C=filename

Defines the level of error at which Enrichment processing will stop, where errorlevel is one of
the following:

-E=errorlevel

Stops processing only if Enrichment issues a severe message.S

Stops processing if Enrichment issues a warning or severe message.W

Stops processing when Enrichment issues an informational, warning, or severe
message.

I

This switch overrides the Environment tag group's <ERRORLEVEL> tag setting in the control
file. If you do not use this switch, Enrichment stops processing according to the <ERRORLEVEL>
tag setting. If you have not set the <ERRORLEVEL> tag, processing stops only when a severe
message occurs.

Specifies the name of the file or DD in which the compiled or decompiled control file will be
stored. The default compile DD is DD:COMPCNTL for mainframe systems or STREAMW.CMP
for UNIX and Windows. The default decompile DD is DD:DECNTL for mainframe systems or
STREAMW.DMP for UNIX and Windows.

-F=filename

Specifies the name of the file or DD in which the memory log will be stored. This will store all
memory allocations and deallocations used by Enrichment. Do not use this argument unless
instructed to by Technical Support. There is no default.

-G=filename

Indicates additional content that you want to include in the Enrichment report file. Currently the
only valid value is R, which specifies the inclusion of a numbered listing of the rule file in the
Enrichment report.

Encrypted rule files cannot be included in the Enrichment report.

-I=include

Identifies a key used to compile or decompile control files. A key consists of up to 10 characters
that are used to lock or unlock the control file. Any rules included in the control file with the
Content tag group are also compiled or decompiled using the key. The first time a control file
is processed using a specific key, it is compiled. The next time it is run using the same key, it
is decompiled. For more information on compiling and decompiling, refer to Securing a Control
File on page 77.

-K=key

209EngageOne Enrichment 7.4.1 Developer Guide

Running an Application

DescriptionArgument

Specifies the size of Enrichment output messages, where length is one of the following:-L=length

Messages break to the next line every 80 characters.S

Messages break to the next line every 132 characters.

This switch overrides the Environment tag group <REPORTLENGTH> tag setting
in the control file. If you do not use this switch, Enrichment breaks messages
according to the <REPORTLENGTH> tag setting. If you have not set the
<REPORTLENGTH> tag, Enrichment breaks messages to the next line every 80
characters.

L

This switch overrides the Environment tag group <REPORTLENGTH> tag setting in the control
file. If you do not use this switch, Enrichment breaks messages according to the
<REPORTLENGTH> tag setting. If you have not set the <REPORTLENGTH> tag, Enrichment
breaks messages to the next line every 80 characters.

Specifies the filename for the Enrichment message file. If you do not use this switch, Enrichment
assumes the message file is DD:REPORT for mainframe systems or STREAMW.MSG for
UNIX orWindows. If you have not defined DD:REPORT on your mainframe system, Enrichment
routes messages to JES output (as if you specified SYSOUT=*) and generates a warning.

-M=filename

Specifies the filename for the Enrichment uplift report. The uplift report is generated whenever
you use a secondary CASS™ product. (To use a secondary CASS™ product, specify the second
parameter of the <CASSTYPE> tag.)

The Enrichment uplift report shows you the CASS™ coding percentage for each CASS™ product
and how much the secondary CASS™ product improved your coding percentage. The
Enrichment uplift report is generated whenever you use a secondary CASS™ product, regardless
of whether or not you specify the O run-time parameter. If you do not specify the O parameter
the uplift report is placed in the default location as follows:

• Windows and UNIX: The uplift report is placed in the working directory as is named uplift.txt.
• Mainframe: The uplift report is placed in DD:UPLIFT.

-O=filename

210EngageOne Enrichment 7.4.1 Developer Guide

Running an Application

DescriptionArgument

Specifies which messages Enrichment should include in the message file, where print is one
of the following:

-R=print

Reports no messages.N

Reports detailed messages. This is the most comprehensive level of reporting.D

Reports only severe messages. Severe messages reflect conditions that halt
Enrichment processing.

S

Reports warnings and severe messages. Warning messages reflect error conditions
that may not cause Enrichment to stop but can produce unexpected processing
results.

W

Reports informational, warning, and severe messages. Enrichment displays
informational messages to indicate progress during processing. Informational
messages require no corrective action.

I

Reports processing, informational, warning, and severe messages. Processing
messages are more specific than informational messages and may be helpful as
troubleshooting aids.

P

This switch overrides the Environment tag group <MESSAGELEVEL> tag in the control file. If
you do not apply this switch, Enrichment uses the <MESSAGELEVEL> tag setting to place
messages in the processing report. If you have not set the <MESSAGELEVEL> tag, Enrichment
places processing, informational, warning, and severe messages in the report.

Defines whether Enrichment will place message numbers in the reports it generates, where
messagenumYN is one of the following:

-S=messagenumYN

Message numbers appear in the report.Y

Message numbers do not appear in the report.N

If you do not use this switch, Enrichment assumes S=Y.

211EngageOne Enrichment 7.4.1 Developer Guide

Running an Application

DescriptionArgument

Specifies the level of trace information to include in the Enrichment Report, where tracelevel
is one of the following:

-T=tracelevel

Includes an intermediate amount of trace information.I

Includes full trace information.F

This switch is useful for troubleshooting, especially if there appear to be problems with
Enrichment output.

Creates a user-defined variable,%%varname, and assigns to it the given value. For example,

-U=myvar=some_value

This would create a variable named %%myvar with a value of some_value.

You can define as many unique variables as you want but you can only specify each variable
once.

Do not include the double percent (%%) when you define the variable name. Enrichment will
automatically add this.

The variable name cannot be a system, CASS, or presort variable.

The maximum total length of the variable name, second equal sign, and value is 129 characters.

Command line variables may be used as file names on all file tags, including <REJECTFILE>.
Using command line variables for file names does not affect the behavior of DYNAFILE.

Note: The rule file may change the value of a command line variable used as a file
name, but the changes will not affect the value used for the file. This is because the
value used for the file is set when the control file is processed. Since the rule file is
processed after the control file, it is too late to alter the file name.

-U=varname=value

Validates the control file for correct tagging and syntax, but does not process input or output
files. This switch is useful for troubleshooting control files.

-V

For Postscript only, specifies the maximum record size, in KB, of a record present in any input
files. This should only be used if records greater than 32k are present in an input file.

-W=maxRecordSize

Onmainframe systems, prior to version 6.6.2, Enrichment opened READ files as text files. This
caused records read to have spaces truncated. Depending on how the file was allocated,
carriage control bytes could have been interpreted rather than returned to the user. Currently,
Enrichment opens READ files as binary in order to return the true contents of the file.

Enabling this flag, will cause Enrichment to open READ files as text files and process them as
it did prior to version 6.6.2.

-Y

For mainframe systems only, removes trailing spaces from records read by the READ function.-Z

212EngageOne Enrichment 7.4.1 Developer Guide

Running an Application

Return Codes

Enrichment return codes identify the success or failure of an engine run. The standard Enrichment
return codes are as follows:

0 = Normal completion

2 = Successful completion with one or more information messages issued

4 = Successful completion with one or more warning messages issued

8 = Enrichment terminated with a severe error

Other return codes may be generated by the user code (the MESSAGE function) or the system
run-time environments.

Using Field Values to Halt Processing

You can use the MESSAGE function to halt processing based on the value of a field. For example,
if you want to halt processing if the account number is null, you could define a field called
%%ACCOUNT_NUM and specify the following in your rule file:

if %%ACCOUNT_NUM = "" then
message(1, S, "Account number is missing")

endif

This would generate a severe message (as indicated by the “S”) which would halt processing. For
more information on the MESSAGE function, see the Enrichment Language Reference Guide.

Performance Tuning

You can control most performance issues by using Environment tag group tags that are related to
memory usage. Placing these tags in your control file allows you to manage the following aspects
of memory usage:

Single document buffer controlled by the <SINGLEBUFFER> tag

Document sort buffer controlled by the <DOCBUFFER> tag

213EngageOne Enrichment 7.4.1 Developer Guide

Running an Application

Temporary document storage buffer controlled by the <IO>, <FILEBUFFER>, and
<MAXFILEBUFFERS> tags

Mainframe Hiperspace controlled by the <IO>, <HIPERMAX>, and <HIPERTRANSFER> tags

These features are discussed in detail below. To determine the appropriate settings for these tags,
look at the Enrichment report that is generated when you run your application. The Enrichment report
will tell you howmuchmemory was used. You can optimize performance by setting the initial memory
block sizes to the reported levels using appropriate the Environment tag group tags.

Note: Enrichment applications require enough memory to hold both the program and the
contents of a single document. The Enrichment program and standard data elements typically
require 5 to 6 MB of memory.

The following diagram illustrates memory usage.

Note: On mainframe systems, Enrichment can run above or below the 16 MB line.

Single-Document Buffer

The single-document buffer holds one entire document while Enrichment searches within it for fields.
Enrichment allocates a block of memory for this buffer when the program starts. If Enrichment reads
a document that does not fit into the buffer, it automatically increases the buffer size until the document
fits. The single-document buffer will be at least as big as the largest document in the input.

Use the Environment tag group <SINGLEBUFFER> tag to control the initial size of the single-document
buffer (in the range 1 KB to 2 GB) and its rate of growth, or growth factor. The growth factor is a
percentage (in the range 1% to 200%) of the buffer size at the time it is being increased. Enrichment
automatically increases the buffer size by the growth factor as necessary until the document fits.
The default <SINGLEBUFFER> tag setting for initial buffer size is 32 KB. The default growth factor
setting is 50.

214EngageOne Enrichment 7.4.1 Developer Guide

Running an Application

For example, if you set <SINGLEBUFFER> initially to 10 KB with a growth factor of 50% and the
current document is 20 KB in size, Enrichment increases the single-document buffer size first by 5
KB (50% of 10 KB) to 15 KB and then by 7.5 KB (50% of 15 KB) to 22.5 KB.

For complete information on using the <SINGLEBUFFER> tag, refer to the Enrichment Language
Reference Guide.

Document Sort Buffer

The Document Sort Buffer stores an internal index and data about the documents. It is only used
during all-at-a-time processing. Enrichment allocates a block of memory for the document properties
buffer when the program starts. If the size of this buffer is insufficient, Enrichment automatically
doubles it. Use the Environment group <DOCBUFFER> tag to control the initial size of the document
properties buffer (in the range 1K to 2G-1K). Adjusting the initial size of the buffer minimizes the
number of times that reallocation occurs.

For complete information on using the <DOCBUFFER> tag, refer to the Enrichment Language
Reference Guide.

Temporary Document Storage Buffer

The Temporary Document Storage Buffer holds the contents of all documents. It is only used during
all-at-a-time processing. By temporarily storing the documents during sorting, Enrichment can
significantly reduce I/O and analysis time. On mainframe systems, the actual storage of these
documents can be in memory, in VSAM files, in hiperspace memory, or in a combination of these.
On Windows and UNIX systems documents can be stored in memory or on disk. To specify the
storage location, use the Input tag group <IO> tag. For complete information on the <IO> tag, refer
to the Enrichment Language Reference Guide.

The <FILEBUFFER> tag specifies the size of the memory blocks to acquire each time Enrichment
requires more memory. If you set the size of the file buffers too low, Enrichment must frequently
obtain more memory blocks during processing. The default <FILEBUFFER> setting is 200 KB. For
complete information on using the <FILEBUFFER> tag, refer to the Enrichment Language Reference
Guide.

The <MAXFILEBUFFERS> tag sets the maximum number of file buffers that Enrichment can acquire.
Once the maximum is reached, Enrichment switches to either hiperspace or disk, based on the <IO>
tag setting. You can set the <MAXFILEBUFFERS> tag to an integer in the range 1 to 10000. For
complete information on using the <MAXFILEBUFFERS> tag, refer to the Enrichment Language
Reference Guide.

215EngageOne Enrichment 7.4.1 Developer Guide

Running an Application

Required Print Resources

Depending on your printing environment, Enrichment may require some of the following external
print resources for processing:

• AFP environments: PAGEDEFs, FORMDEFs, overlays, page segments (PSEGs), and fonts
• Xerox environments: forms, fonts, IMGs, Job Source Language (JSL), and JDLs
• PCL environments: fonts and macros
• PostScript environments: fonts or other resources

Enrichment does not create or modify print resources (although Enrichment can change which
resources a job uses). It typically uses the print resources for an existing application without change.
However, if you wish to change the look of the document, you must identify or create print resources
for the print applications.

AFP Print Resources

AFP printing systems, such as IBM’s Print Services Facility (PSF), require that all copy groups and
page formats for a single print job be contained in a single PAGEDEF and FORMDEF. You must
ensure that these resources are available before printing.

Consolidated FORMDEFs and PAGEDEFs

When multiple document streams that use different PAGEDEFs or FORMDEFs are merged, a
comprehensive PAGEDEF or FORMDEF must be created. This is accomplished by combining the
information from these resources into a single resource.

With Page Printer Formatting Aid (PPFA), the process is fairly simple:

1. Combine the source code for various copy groups and place it in one FORMDEF.
2. Combine the source code for various page formats and place it in one PAGEDEF.
3. Process the tags with PPFA.

Note: If you are unfamiliar with PPFA or have not used the COPYGROUP or PAGEFORMAT
commands before, refer to the IBM Page Printer Formatting Aid/370: User’s Guide and
Reference.

If you use Print Management Facility (PMF) or other menu-driven AFP resource generators, use the
menus to generate new FORMDEFs and PAGEDEFs that contain the combined copy groups and
page formats.

216EngageOne Enrichment 7.4.1 Developer Guide

Running an Application

Xerox Print Resources

Metacode and DJDE use DJDE records to select the appropriate JDL, Job Descriptor Entry (JDE),
or form for printing. Enrichment cannot modify JDLs or forms because they are maintained on the
printer fixed disk, separate from the business application. However, Enrichment can add or change
DJDE records to indicate the type of print resources to use.

PCL Print Resources

Some applications use macros to define forms or other objects that might appear on a page. You
can load these macros into the printer permanently or include them at the beginning of a file.
Enrichment cannot modify permanent resources but can change which resources are invoked.

PostScript Print Resources

Some applications use predefined objects. You can load these objects into the printer permanently
or include them at the beginning of a file.

217EngageOne Enrichment 7.4.1 Developer Guide

Running an Application

6 - Troubleshooting an
Application

In this section

Troubleshooting an Application..219
Testing Performance...221

Troubleshooting an Application

If problems arise when you run the application, complete the following checks:

• Ensure that your script includes all files and the Enrichment module. Also ensure that the necessary
files exist on the system.

• Ensure that print stream analysis coding in your control file is correct by following these steps.

1. Create a small test input file with a known number of pages and documents. We recommend
10 to 100 documents—enough to get a representative sample.

2. Check the Enrichment Report to ensure that Enrichment identified the correct number of
documents and pages.

3. Write one document to a specific output to make sure it emerges in the correct format with no
missing parts. This can verify that you specified the <DOCUMENT> and <PAGE> tags correctly.

4. Write a “trace” extract file or use the FOUND function to verify that you are collecting the proper
data from the document. This confirms that fields are being selected properly. You can also
write page numbers and other system variables to the output to ensure that the documents
are being selected correctly.

Note: Because it is common for print streams to change from time to time, you should
build your application to anticipate changes to important parts of the print stream. We
recommend that you use the FOUND function to detect when critical fields are not found
during processing. You can also use this during development to see if any documents
are unusual (for example, if fields are not in the predicted locations). Use the MESSAGE
function to report errors.

• Verify that your Enrichment application does not contain any of the following common user errors:

• The <DOCUMENT> tag specification is never met. Enrichment tries to read your entire input into
memory as a single document. If you are running a small sample input, the Enrichment Report
will show only one document found in the input. If you are running a large input, Enrichment will
run out of memory and issue the error shown below.

"PDR2001S Unable to acquire number bytes of memory to enlarge single document buffer."

• The <DOCUMENT> tag location is above the <PAGE> tag target. As a result, Enrichment does
not find documents correctly.

• The <DOCUMENT> tag specifies a top-of-document location that is after the first complete page
of the document.

• Fields are improperly extracted from the document because of incorrect referencing.

• The record length of the output file is incorrectly specified:

219EngageOne Enrichment 7.4.1 Developer Guide

Troubleshooting an Application

Enrichment issues a warning indicating that "records were truncated" if the record length is
incorrect. This results in incomplete documents, which typically cannot be printed.

•

• If you are adding drawn barcodes to a document, you must set up the output file as variable
length.

• The ZIP Code™ and the ZIP + 4® are not in the index file to control presorting as required. If you
use CASS™ cleansing to obtain the ZIP Code™ and ZIP + 4®, the POSTNET™ barcode will be
blank if the address was not correct. Therefore, you should not place the POSTNET™ barcode in
the index file for all documents. If the POSTNET™ is bad, place the ZIP Code™ in the index (or
put the original 5-digit ZIP Code™ and the ZIP + 4® from the POSTNET™, if available, in the index
for all documents). Otherwise, invalid presorting may occur.

• The reject file has been confused with the residual file. During postal presort, it is often incorrectly
assumed that the reject file is the same as the residual file. Residual documents are not normally
deleted from the sorted index file during presort, but are instead placed at the end of the normal
output stream. Rejected documents are those whose record were dropped by the program called
in the Presort tag group so there is no corresponding record returned in the <OUTFILE1> file. Note
that documents that fall into this category have no additional processing done on them, including
<ADD> processing. If there is no <REJECTFILE> tag, then these documents will not be included
in the output.

• The CASS™ cleansing parameters are not set correctly. This normally affects the percentage of
mail that is verified.

• The end tag is left off of a tag group structure. This usually results in an error message stating that
one or more tags are not valid for the tag group in question.

• The page size in the FORMDEF or PAGEDEF does not match the page size used by Enrichment.
• Variables are not initialized or reset properly in a rule file. This can cause erroneous results in which
the variable retains a value from the previous document or the original value used for the variable
is not what was expected. It is recommended that variables be initialized in the START: section of
the rule file.

• An incorrect version of the C run-time libraries is used. Make sure you have the latest version of
the C run-time libraries installed on your mainframe system.

• The errors PDR2000S and PDR2002S indicate that you have used all available memory. On
mainframe systems, this may require an increase in the REGION size. These errors may indicate
that Enrichment is reading a large file as a single document.

• Review the statistics at the end of a successful test run to get an idea of how you can tune the
<SINGLEBUFFER> setting. An improper <SINGLEBUFFER> value can cause problems. Assuming
the test file is representative of a production file, a suggested starting value for <SINGLEBUFFER>
is 110% of the value used for the single document buffer as reported in the Enrichment report.
Generally a growth factor of 50 is appropriate. The idea is to set the initial value large enough to
hold the largest document and eliminate the need to make this area larger. The single document
buffer is the only area that must be in contiguous memory.

220EngageOne Enrichment 7.4.1 Developer Guide

Troubleshooting an Application

Testing Performance

The amount of time Enrichment requires for processing depends on the functions performed, the
system used, and other system activities concurrent with the run. You should test Enrichment to
ensure that it completes processing in a time frame compatible with your print processing window.
In some cases, Enrichment may actually save time by eliminating steps in your current process.

Onmainframe systems, you should also consider whether your test jobs are getting the same priority
as production jobs. In many cases, test jobs run slower because they are given lower system priority
than production jobs. You should also check the level of your run-time library (IBM C/370 Runtime
Library, SAA AD/Cycle Language Environment, or Open Edition AD/Cycle C/370 Language Support
Feature). Fixes or newer versions of the run-time library may be available that would enhance your
application’s performance.

221EngageOne Enrichment 7.4.1 Developer Guide

Troubleshooting an Application

Notices

Copyright © 1993, 2021 Precisely. All rights reserved.MapInfo, Group 1 Software and ConnectRight
Mailer are trademarks of Precisely. All other marks and trademarks are property of their respective
holders.

Precisely holds a non-exclusive license to publish and sell ZIP + 4® databases on optical and magnetic
media. The following trademarks are owned by the United States Postal Service: CASS, CASS
Certified, DPV, eLOT, FASTforward, First-Class Mail, Intelligent Mail, LACSLink, NCOALink, PAVE,
PLANET Code, Postal Service, POSTNET, Post Office, RDI, SuiteLink , United States Postal Service,
Standard Mail, United States Post Office, USPS, ZIP Code, and ZIP + 4. This list is not exhaustive
of the trademarks belonging to the Postal Service.

Precisely Inc. is a non-exclusive licensee of USPS® for NCOALink® processing.

Prices for Precisely products, options, and services are not established, controlled, or approved by
USPS® or United States Government. When utilizing RDI™ data to determine parcel-shipping costs,
the business decision on which parcel delivery company to use is not made by the USPS® or United
States Government.

Copyright © DL Technology Ltd 1992-2010

Precisely Inc.

ICU License - ICU 1.8.1 and later

Copyright (c) 1995-2006 International Business Machines Corporation and others

Enrichment PDF Reader Powered by Foxit. Copyright (c) 2003-2019 by Foxit Software Incorporated

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, provided that the above
copyright notice(s) and this permission notice appear in all copies of the Software and that both the
above copyright notice(s) and this permission notice appear in supporting documentation.

Otherwise all product names are trademarks or registered trademarks of their respective holders.

223EngageOne Enrichment 7.4.1 Developer Guide

Copyright

2 Blue Hill Plaza, #1563
Pearl River, NY 10965
USA

www.precisely.com

© 1993, 2021 Precisely. All rights reserved.

	Table of Contents
	Introducing Enrichment
	What is Enrichment
	What Can I Do with Enrichment
	How Does Enrichment Work
	Enrichment Architecture
	Print Streams
	AFP Print Streams
	DJDE Print Streams
	Line Data
	Fixed-Length
	Metacode Print Streams
	PCL
	PDF
	PostScript
	Carriage Controls
	Table Reference Characters (TRCs)

	Enrichment Language Basics
	Enrichment Language Overview
	Defining an Object
	Defining an Object's Attributes
	Enrichment Language vs. Procedural Languages

	Tags and Tag Groups
	Variables
	Initializing Variables in the Rules
	System variables
	Common System Variables

	Arrays

	Functions
	Arguments
	Return values
	Return codes
	Return values
	Return messages

	Operators
	Instructions
	IF...THEN...ELSE
	QUIT
	SELECT CASE
	FOR...NEXT
	DO...LOOP
	Example of Instructions

	Logical Expressions
	Comparing Numbers
	Comparing Strings

	Print Stream Commands
	Comments
	Specifying Character Strings
	Specifying Files
	Specifying Files on Mainframe Systems
	Specifying Files On UNIX and Linux
	Specifying Files On Windows
	Pipes for UNIX, Linux, and Windows Users

	Specifying Measurements

	Developing an Application
	Application Development Process
	Necessary Skills
	Identifying User Requirements
	Preliminary Design
	Building the Application
	Testing the Application
	Moving the Application to Production

	Processing Flow
	Processing Steps
	Process Flow Diagrams
	One-at-a-Time Processing
	All-at-a-Time Processing without Presort
	All-at-a-Time Processing with Presort

	Using Multiple Enrichment Runs

	Input and Output
	Specifying an Input Print Stream
	Defining Page Breaks and Document Breaks
	Identifying Fields on a Document
	Defining a Fixed Position Field
	Defining a Reference Field

	Fields in Composed Print Streams
	Finding Fields on Data Records Instead of Print Lines
	Finding Fields on Particular Pages
	Extracting Fields Based on End Criteria
	Hexadecimal and Binary References
	Replacing Fields and Substituting Inline Variables in Metacode Files

	Fields in AFP Records
	Reading Keyed Information from Files
	Updating Keyed Data Files
	Using the WRITEV Function to Update KSDS VSAM Files (Mainframe Only)

	Reading and Writing Record Data
	Defining Output
	Sidefile Tag Group

	Adding an AFP Index to an Output
	Redirecting Input and Output at Run Time

	Developing a Control File
	Creating a Control File
	Control File Tags
	Sharing Code Between Applications
	Securing a Control File
	Sample Compile JCL
	Sample Decompile JCL
	Sample JCL for Running Compile or Decompile

	Example Control File

	Developing a Rule File
	Creating a Rule File
	User-Defined Variables
	String Expressions
	Numeric Expressions
	Arrays
	Logical Expressions

	Assigning Statements
	Concatenation
	Math Operations
	Function Calls

	Setting a Counter
	Example Rule File

	Working with User-Written Functions
	Using User-Written Functions
	Writing a User-Written Function
	Example COBOL User-Written Function
	Example C User-Written Function

	Call Areas in User-Written Functions
	Input Call Area
	Output Call Area

	Compiling and Linking User-Written Functions
	Compiling and Linking on UNIX
	Compiling and Linking on Linux
	Compiling and Linking on Windows
	Compiling and Linking on Mainframe

	Declaring User-Written Functions
	Calling User-Written Functions
	Sample User-Written Functions

	Utilities
	Mainframe Utilities
	Running Mainframe Utilities
	PDRCCA2M
	PDRCCM2A
	PDRCMETA
	PDRLNADD
	PDRLNSUB
	PDRXCME

	UNIX/Linux Utilities
	block
	dumpafp
	etoa
	pdrcca2m
	pdrccm2a
	pdrxcme
	pswrapper
	unblock

	Commonly-Used Features
	Enhancing Content
	Replacing Text
	Deleting Information
	Moving Information
	Adding Barcodes
	Using the Add Tag Group with DJDE
	Supported Drawn Barcode Types
	Commonly-Used System Variables
	Adding Barcodes and Other Objects
	Adding Drawn Barcodes to Metacode Documents
	Adding Font-Based Barcodes to Metacode Documents
	Adding Barcodes with Insert Records
	Examples

	Adding Inserts
	Adding Inserts with Static File Names
	Adding Inserts with Dynamic File Names
	Specifying the Number of Copies for Inserts
	Using Variable Substitution to Add Inserts
	Using Fields to Specify where to Add Inserts

	Inserting Records from an External File
	Looking Up Records from a Table or File
	Inserting Banner Pages

	Sorting, Outsorting, and Output
	Using %%TOTAL_PAGES to Assign Output
	Using <OUTPUT> Commands in the Rule File
	Sorting Documents Within a Single Input
	Sorting an Output Using the Mainframe System Sort
	Sorting a Print Stream Based on the Order of Another File
	Splitting Output Print Streams Into Multiple Files
	Static vs Dynamic File Allocation
	Example of Splitting Output Print Streams into Multiple Files

	Consolidating Documents
	Using <INPUTNAME> Tag for Consolidation
	Knowing which Documents were Consolidated
	Consolidating Print Streams
	Example

	Reordering Pages within each Document
	Naming Output Files Dynamically
	Example

	Adding a Document to All Documents
	Example

	Duplex Output
	Example

	Multiple-Up Printing
	FORMDEFs and N-Up Processing

	Extracting Information from a Print Stream
	Example

	Postal Processing
	CASS™ Processing
	CASS Processing - Specifying Address Information
	CASS Processing - Enrichment Address Variable Processing
	Enabling CASS Processing
	CASS Processing - Example with Finalist

	Postal Presort
	Using the Presort Tag Group to Call Other Programs
	Rule File Processing for Presort
	Performing Presort
	Postal Presort Example

	ConnectRight Mailer
	ConnectRight Mailer Example

	Using Mail360 for Intelligent Mail Barcodes
	Using IMpb barcodes with <CODE128>

	Managing Print Stream Resources
	Merging Resources
	Using Resource Files
	Logging Resource Activities

	Creating a Vault Journal File

	Running an Application
	Running on Mainframe Systems
	Temporary File Storage
	Using Hiperspace for Temporary File Storage
	Using VSAM Files for Temporary File Storage

	Blocking Input and Output Data Sets on Mainframe Systems

	Running on UNIX
	Enrichment Executables
	Temporary File Storage on UNIX
	Running Simultaneous Jobs on UNIX

	Running on Windows
	Temporary File Storage on Windows

	Run-Time Arguments
	Return Codes
	Using Field Values to Halt Processing
	Performance Tuning
	Single-Document Buffer
	Document Sort Buffer
	Temporary Document Storage Buffer

	Required Print Resources
	AFP Print Resources
	Xerox Print Resources
	PCL Print Resources
	PostScript Print Resources

	Troubleshooting an Application
	Troubleshooting an Application
	Testing Performance

